An improved hybrid fusion of noisy medical images using differential evolution-based artificial rabbits optimization algorithm

被引:1
|
作者
Mishra, Niladri Shekhar [1 ]
Dhabal, Supriya [1 ]
机构
[1] Netaji Subhash Engn Coll, Dept Elect & Commun Engn, Kolkata 700152, West Bengal, India
关键词
Image fusion; Multi-modal MIF; Image denoising; Differential evolution; Artificial rabbits optimization; FILTER;
D O I
10.1007/s11045-024-00889-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article investigates the problem of removing noise from multi-modal medical images to ensure efficient Medical Image Fusion (MIF). The proposed MIF achieves optimal results with a novel hybrid image fusion scheme. This scheme is achieved with an improved performance of the Artificial Rabbits Optimization (ARO) algorithm and a novel cascaded combination of filters. The exploring mechanism of the classical ARO algorithm is enriched by incorporating the approaches adopted in Differential Evolution and thus termed Differential Evolution-based Artificial Rabbits Optimization (DEARO). The effectiveness of the novel DEARO algorithm is proven through the testing of the CEC 2017 benchmark functions and it is noticed that the proposed approach offers superior solutions than existing optimization algorithms. Ten image fusion quality evaluation metrics are compared to demonstrate the performance of the proposed approach. Considering Mutual Information (MI), the proposed method exhibits 40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40\%$$\end{document} average improvements in the fusion of clean images. Similarly, 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50\%$$\end{document}, 36%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$36\%$$\end{document}, and 21%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$21\%$$\end{document} improvements are noticed in MI values when both the modalities of source images are contaminated with Gaussian, Salt & Pepper, and Speckle noises of variance 0.1. The qualitative evaluation of the fused image shows the advancement of the proposed scheme in multi-modal MIF compared to the contemporary approaches.
引用
收藏
页码:83 / 137
页数:55
相关论文
共 50 条
  • [1] Complementary Differential Evolution-based Whale Optimization Algorithm for Function Optimization
    Qu, Qiang
    Huang, Yi-Han
    Wang, Xiao-Li
    Chen, Xue-Bo
    IAENG International Journal of Computer Science, 2020, 47 (04) : 1 - 11
  • [2] An improved image denoising technique using differential evolution-based salp swarm algorithm
    Supriya Dhabal
    Roshni Chakrabarti
    Niladri Shekhar Mishra
    Palaniandavar Venkateswaran
    Soft Computing, 2021, 25 : 1941 - 1961
  • [3] An improved image denoising technique using differential evolution-based salp swarm algorithm
    Dhabal, Supriya
    Chakrabarti, Roshni
    Mishra, Niladri Shekhar
    Venkateswaran, Palaniandavar
    SOFT COMPUTING, 2021, 25 (03) : 1941 - 1961
  • [4] Improved Differential Evolution-based Particle Filter Algorithm for Target Tracking
    Wang Yanan
    Chen Jie
    Gan Minggang
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 3009 - 3014
  • [5] Forecasting the Amount of Recyclables Using an Improved Differential Evolution-based Neural Network
    Yang, Jin
    Dong, Shuangshuang
    Zhang, Haoran
    Jiang, Peng
    Liu, Xiao
    Zheng, Meimei
    Du, Ningxin
    IFAC PAPERSONLINE, 2022, 55 (10): : 1062 - 1067
  • [6] A Differential Evolution-Based Hybrid NSGA-II for Multi-objective Optimization
    Pan Xiaoying
    Zhu Jing
    Chen Hao
    Chen Xuejing
    Hu Kaikai
    PROCEEDINGS OF THE 2015 7TH IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2015, : 81 - 86
  • [7] A Hybrid Algorithm Based on Firefly Algorithm and Differential Evolution for Global Optimization
    Sarbazfard, S.
    Jafarian, A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (06) : 95 - 106
  • [8] Improved K-Means Algorithm Based on Hybrid Fruit Fly Optimization and Differential Evolution
    Hu, Jixiong
    Wang, Chunzhi
    Liu, Chuan
    Ye, Zhiwei
    2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2017), 2017, : 464 - 467
  • [9] Fusion of multi-focus images using differential evolution algorithm
    Aslantas, V.
    Kurban, R.
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 8861 - 8870
  • [10] Automatic hippocampus localization in histological images using Differential Evolution-based deformable models
    Mesejo, Pablo
    Ugolotti, Roberto
    Di Cunto, Ferdinando
    Giacobini, Mario
    Cagnoni, Stefano
    PATTERN RECOGNITION LETTERS, 2013, 34 (03) : 299 - 307