Recent advances in the open-source ClinicaDL software for reproducible neuroimaging with deep learning

被引:0
|
作者
Hassanaly, Ravi [1 ]
Brianceau, Camille [1 ]
Diaz, Mauricio [2 ]
Loizillon, Sophie [1 ]
Thibeau-Sutre, Elina [4 ]
Cassereau, Nathan [3 ]
Colliot, Olivier [1 ]
Burgos, Ninon [1 ]
机构
[1] Sorbonne Univ, Hop La Pitie Salpetriere, AP HP, Paris Brain Inst ICM,CNRS,Inria,Inserm,Inst Cerve, F-75013 Paris, France
[2] INRIA, SED, Paris, France
[3] CNRS, IDRIS, Orsay, France
[4] Univ Twente, Tech Med Ctr, Dept Appl Math, Enschede, Netherlands
来源
关键词
Software Platform; Deep Learning; Neuroimaging; Reproducibility; Validation;
D O I
10.1117/12.3006039
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In this paper, we present ClinicaDL, an open-source software platform that aims at enhancing the reproducibility and rigor of research for deep learning in neuroimaging. We first provide an overview of the software platform and then focus on recent advances. Features of the software aim at addressing three key issues in the field: the lack of reproducibility, the methodological flaws that plague many published studies and the difficulties using neuroimaging datasets for people with little expertise in this application area. Key existing functionalities include automatic data splitting, checking for data leakage, standards for data organization and results storing, continuous integration and integration with Clinica for preprocessing, amongst others. The most prominent recent features are as follows. We now provide various data augmentation and synthetic data generation functions (both standard and advanced ones including motion and hypometabolism simulation). Continuous integration test data are now versioned using DVC (data version control). Tools for generating validation splits have been made more generic. We made major improvements regarding usability and performance. We now support multi-GPU training and automatic mixed precision (to exploit tensor cores). We created a graphical interface to easily generate training specifications. We allow tracking of experiments through standard tools (MLflow, Weights&Biases). We believe that ClinicaDL can contribute to enhance the trustworthiness of research in deep learning for neuroimaging. Moreover, its functionalities and coding practices may serve as inspiration for the whole medical imaging community, beyond neuroimaging.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing
    Thibeau-Sutre, Elina
    Diaz, Mauricio
    Hassanaly, Ravi
    Routier, Alexandre
    Dormont, Didier
    Colliot, Olivier
    Burgos, Ninon
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [2] DeepNeuro: an open-source deep learning toolbox for neuroimaging
    Andrew Beers
    James Brown
    Ken Chang
    Katharina Hoebel
    Jay Patel
    K. Ina Ly
    Sara M. Tolaney
    Priscilla Brastianos
    Bruce Rosen
    Elizabeth R. Gerstner
    Jayashree Kalpathy-Cramer
    [J]. Neuroinformatics, 2021, 19 : 127 - 140
  • [3] DeepNeuro: an open-source deep learning toolbox for neuroimaging
    Beers, Andrew
    Brown, James
    Chang, Ken
    Hoebel, Katharina
    Patel, Jay
    Ly, K. Ina
    Tolaney, Sara M.
    Brastianos, Priscilla
    Rosen, Bruce
    Gerstner, Elizabeth R.
    Kalpathy-Cramer, Jayashree
    [J]. NEUROINFORMATICS, 2021, 19 (01) : 127 - 140
  • [4] Guest Editorial: Deep Learning in Open-Source Software Ecosystems
    Honghao Gao
    Zijian (Alex) Zhang
    Ramón J. Durán Barroso
    Xiong Luo
    [J]. Automated Software Engineering, 2022, 29
  • [5] Guest Editorial: Deep Learning in Open-Source Software Ecosystems
    Gao, Honghao
    Zhang, Zijian
    Duran Barroso, Ramon J.
    Luo, Xiong
    [J]. AUTOMATED SOFTWARE ENGINEERING, 2022, 29 (02)
  • [6] Open-source deep-learning software for bioimage segmentation
    Lucas, Alice M.
    Ryder, Pearl, V
    Li, Bin
    Cimini, Beth A.
    Eliceiri, Kevin W.
    Carpenter, Anne E.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2021, 32 (09) : 823 - 829
  • [7] Recent advances in the economics of open source software
    Darmon, Eric
    Torre, Dominique
    [J]. International Journal of Open Source Software and Processes, 2009, 1 (02)
  • [8] Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies
    Routier, Alexandre
    Burgos, Ninon
    Diaz, Mauricio
    Bacci, Michael
    Bottani, Simona
    El-Rifai, Omar
    Fontanella, Sabrina
    Gori, Pietro
    Guillon, Jeremy
    Guyot, Alexis
    Hassanaly, Ravi
    Jacquemont, Thomas
    Lu, Pascal
    Marcoux, Arnaud
    Moreau, Tristan
    Samper-Gonzalez, Jorge
    Teichmann, Marc
    Thibeau-Sutre, Elina
    Vaillant, Ghislain
    Wen, Junhao
    Wild, Adam
    Habert, Marie-Odile
    Durrleman, Stanley
    Colliot, Olivier
    [J]. FRONTIERS IN NEUROINFORMATICS, 2021, 15
  • [9] Pycro-Manager: open-source software for customized and reproducible microscope control
    Pinkard, Henry
    Stuurman, Nico
    Ivanov, Ivan E.
    Anthony, Nicholas M.
    Wei Ouyang
    Li, Bin
    Yang, Bin
    Tsuchida, Mark A.
    Chhun, Bryant
    Zhang, Grace
    Mei, Ryan
    Anderson, Michael
    Shepherd, Douglas P.
    Hunt-Isaak, Ian
    Dunn, Raymond L.
    Jahr, Wiebke
    SaulKato
    Royer, Loic A.
    Thiagarajah, Jay R.
    Eliceiri, Kevin W.
    Lundberg, Emma
    Mehta, Shalin B.
    Waller, Laura
    [J]. NATURE METHODS, 2021, 18 (03) : 226 - +
  • [10] Pycro-Manager: open-source software for customized and reproducible microscope control
    Henry Pinkard
    Nico Stuurman
    Ivan E. Ivanov
    Nicholas M. Anthony
    Wei Ouyang
    Bin Li
    Bin Yang
    Mark A. Tsuchida
    Bryant Chhun
    Grace Zhang
    Ryan Mei
    Michael Anderson
    Douglas P. Shepherd
    Ian Hunt-Isaak
    Raymond L. Dunn
    Wiebke Jahr
    Saul Kato
    Loïc A. Royer
    Jay R. Thiagarajah
    Kevin W. Eliceiri
    Emma Lundberg
    Shalin B. Mehta
    Laura Waller
    [J]. Nature Methods, 2021, 18 : 226 - 228