Palm Oil Counter: State-of-the-Art Deep Learning Models for Detection and Counting in Plantations

被引:0
|
作者
Naftali, Martinus Grady [1 ]
Hugo, Gregory [1 ]
Suharjito [2 ]
机构
[1] Bina Nusantara Univ, Comp Sci Dept, BINUS Grad Program Master Comp Sci, Jakarta, Indonesia
[2] Bina Nusantara Univ, Ind Engn Dept, BINUS Grad Program Master Ind Engn, Jakarta, Indonesia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Oils; Feature extraction; YOLO; Accuracy; Real-time systems; Deep learning; Computational modeling; Object detection; object counting; palm oil ripeness; real-time object detection; FRUIT; CLASSIFICATION;
D O I
10.1109/ACCESS.2024.3419835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional palm oil production methods for evaluating fruit bunches (FFBs) are inefficient, costly, and have limited coverage. This study evaluates the performance of various YOLO models and other state-of-the-art object detection models using a novel dataset of oil palm fresh fruit bunches in plantations, captured in the plantation regions of Central Kalimantan Province, Indonesia. The dataset includes five ripeness classes (abnormal, ripe, underripe, unripe, and flower) and presents challenges such as partially visible objects, low contrast scenes, occluded and small objects, and blurry images. The proposed YOLOv8s Depthwise model was compared with other YOLO models, including YOLOv6s, YOLOv6l, YOLOv7 Tiny, YOLOv7l, YOLOv8s, and YOLOv8l. YOLOv8s Depthwise demonstrated a balanced performance, with a compact size (10.6 MB), fast inference time (0.027 seconds), and strong detection accuracy (mAP50 at 0.75, mAP50-95 at 0.481). Its rapid convergence and low training loss highlighted its efficiency, completing training in the shortest time of 2 hours, 18 minutes, and 30 seconds. Furthermore, it achieved low Mean Absolute Error (MAE) of 0.164 and Root Mean Square Error (RMSE) of 0.4, indicating precise counting capability. Hyperparameter tuning revealed that the YOLOv8s Depthwise model achieved optimal performance using the SGD optimizer with a batch size of 16 and a learning rate of 0.001, showing the best balance between accuracy and training efficiency. Data augmentation positively impacted model performance, resulting in improved performance metrics across various models. When evaluated against other state-of-the-art models on the same dataset, including Faster RCNN, SSD MobileNetV2, YOLOv4, and YOLOv9, YOLOv8s Depthwise surpassed other state-of-the-art models, including Faster R-CNN, SSD MobileNetV2, YOLOv4, and EfficientDet-D0 from previous research, in terms of speed, accuracy, and efficiency, making it ideal for real-time palm oil harvesting applications.
引用
收藏
页码:90395 / 90417
页数:23
相关论文
共 50 条
  • [1] Deep learning applications for oil palm tree detection and counting
    Kipli, Kuryati
    Osman, Salleh
    Joseph, Annie
    Zen, Hushairi
    Salleh, Dayang Nur Salmi Dharmiza Awang
    Lit, Asrani
    Chin, Kho Lee
    SMART AGRICULTURAL TECHNOLOGY, 2023, 5
  • [2] Network Intrusion Detection: An Analytical Assessment Using Deep Learning and State-of-the-Art Machine Learning Models
    Md Al-Imran
    Shamim H. Ripon
    International Journal of Computational Intelligence Systems, 14
  • [3] Network Intrusion Detection: An Analytical Assessment Using Deep Learning and State-of-the-Art Machine Learning Models
    Al-Imran, Md
    Ripon, Shamim H.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [4] State-of-the-art skin disease classification: a review of deep learning models
    Jaiyeoba, Oluwayemisi
    Ogbuju, Emeka
    Ataguba, Grace
    Jaiyeoba, Oluwaseyi
    Omaye, James Daniel
    Eze, Innocent
    Oladipo, Francisca
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2025, 14 (01):
  • [5] A Comparative Study of State-of-the-Art Deep Learning Algorithms for Vehicle Detection
    Wang, Hai
    Yu, Yijie
    Cai, Yingfeng
    Chen, Xiaobo
    Chen, Long
    Liu, Qingchao
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2019, 11 (02) : 82 - 95
  • [6] Development of an aerial counting system in oil palm plantations
    Miserque Castillo, Jhany Zulyma
    Laverde Diaz, Rubbermaid
    Rueda Guzman, Claudia Leonor
    II INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING AND AGRICULTURAL SCIENCE (CIIMCA 2015), 2016, 138
  • [7] Deep Reinforcement Learning: A State-of-the-Art Walkthrough
    Lazaridis, Aristotelis
    Fachantidis, Anestis
    Vlahavas, Ioannis
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 69 : 1421 - 1471
  • [8] Deep reinforcement learning: A state-of-the-art walkthrough
    Lazaridis A.
    Fachantidis A.
    Vlahavas I.
    Journal of Artificial Intelligence Research, 2021, 69 : 1421 - 1471
  • [9] A state-of-the-art survey of deep learning models for automated pavement crack segmentation
    Gong, Hongren
    Liu, Liming
    Liang, Haimei
    Zhou, Yuhui
    Cong, Lin
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2024, 13 : 44 - 57
  • [10] Transfer Learning for Object Detection using State-of-the-Art Deep Neural Networks
    Talukdar, J.
    Gupta, S.
    Rajpura, P. S.
    Hegde, R. S.
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 78 - 83