Investigation of Spatial Hole Burning and Linewidth Enhancement Factor Impact on Distributed-Feedback Quantum Cascade Lasers Dynamics

被引:0
|
作者
Zaminga, Sara [1 ]
Columbo, Lorenzo [2 ]
Silvestri, Carlo [3 ]
Gioannini, Mariangela [2 ]
Grillot, Frederic [1 ]
机构
[1] Inst Polytech Paris, LTCI Telecom Paris, Palaiseau, France
[2] Politecn Torino, Dipartimento Elettron & Telecomunicaz, Turin, Italy
[3] Univ Queensland, Sch Elect Engn & Comp Sci, Brisbane, Qld, Australia
关键词
Quantum Cascade Laser; Distributed-feedback; Effective Semiconductor Maxwell-Bloch Equations; Coupled-mode theory; Linewidth Enhancement Factor; Spatial Hole Burning;
D O I
10.1117/12.3001622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this manuscript, we employ a time-domain traveling-wave model with a coupled-mode theory to characterize the dynamic behavior of a mid-Infrared (MIR) Quantum Cascade Laser (QCL) in the Distributed-Feedback (DFB) configuration. Our investigation underscores the crucial influence of the linewidth enhancement factor (LEF) and spatial hole burning (SHB) on the single-mode behavior of DFB QCLs. Disregarding these factors leads to an overestimation of the range of pump currents granting single-mode emission and results in an inaccurate simulation of the multimodal dynamics of DFB QCLs. The numerical simulations presented in this work closely align with experimental observations, specifically focusing on a DFB QCL operating at a wavelength of 9.34 mu m.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Impact of Spatial Hole Burning and Linewidth Enhancement Factor on Distributed-Feedback Quantum Cascade Lasers: A Comprehensive Design Analysis
    Zaminga, Sara
    Columbo, Lorenzo
    Silvestri, Carlo
    Gioannini, Mariangela
    Grillot, Frederic
    IEEE PHOTONICS JOURNAL, 2024, 16 (02): : 1 - 9
  • [2] Measurement and modeling of distributed-feedback lasers with spatial hole burning
    Univ of Illinois at Urbana-Champaign, Urbana, United States
    IEEE J Sel Top Quantum Electron, 2 (547-554):
  • [3] Measurement and modeling of distributed-feedback lasers with spatial hole burning
    Fang, W
    Hsu, A
    Chuang, SL
    TanbunEk, T
    Sergent, AM
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) : 547 - 554
  • [4] LINEWIDTH ENHANCEMENT IN DISTRIBUTED-FEEDBACK SEMICONDUCTOR-LASERS
    AMANN, MC
    ELECTRONICS LETTERS, 1990, 26 (09) : 569 - 571
  • [5] Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers
    Hofstetter, D
    Beck, M
    Faist, J
    Nägele, M
    Sigrist, MW
    OPTICS LETTERS, 2001, 26 (12) : 887 - 889
  • [6] Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers
    Hofstetter, Daniel
    Beck, Mattias
    Faist, Jérôme
    Nägele, Markus
    Sigrist, Markus W.
    2001, Optical Society of America (OSA) (26)
  • [7] Inversionless distributed feedback semiconductor lasers: Ultranarrow linewidth and immunity against spatial hole burning
    Sadeghi, S.M.
    Li, W.
    Journal of Applied Physics, 2008, 104 (01):
  • [8] Inversionless distributed feedback semiconductor lasers: Ultranarrow linewidth and immunity against spatial hole burning
    Sadeghi, S. M.
    Li, W.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
  • [9] SPATIAL HOLE BURNING EFFECTS IN DISTRIBUTED FEEDBACK LASERS
    RABINOVICH, WS
    FELDMAN, BJ
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (01) : 20 - 30
  • [10] Linewidth enhancement factor of terahertz quantum cascade lasers
    Green, Richard P.
    Xu, Ji-Hua
    Mahler, Lukas
    Tredicucci, Alessandro
    Beltram, Fabio
    Giuliani, Guido
    Beere, Harvey E.
    Ritchie, David A.
    APPLIED PHYSICS LETTERS, 2008, 92 (07)