Volatility Analysis of Financial Time Series Using the Multifractal Conditional Diffusion Entropy Method

被引:0
|
作者
Mariani, Maria C. [1 ]
Kubin, William [2 ]
Asante, Peter K. [2 ]
Tweneboah, Osei K. [3 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Computat Sci, El Paso, TX 79968 USA
[3] Ramapo Coll, Dept Data Sci, Mahwah, NJ 07430 USA
关键词
multifractal entropy analysis; diffusion entropy analysis; conditional diffusion entropy; financial time series; STOCK VOLATILITY; MARKETS;
D O I
10.3390/fractalfract8050274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce the multifractal conditional diffusion entropy method for analyzing the volatility of financial time series. This method utilizes a q-order diffusion entropy based on a q-weighted time lag scale. The technique of conditional diffusion entropy proves valuable for examining bull and bear behaviors in stock markets across various time scales. Empirical findings from analyzing the Dow Jones Industrial Average (DJI) indicate that employing multi-time lag scales offers greater insight into the complex dynamics of highly fluctuating time series, often characterized by multifractal behavior. A smaller time scale like t=2 to t=256 coincides more with the state of the DJI index than larger time scales like t=256 to t=1024. We observe extreme fluctuations in the conditional diffusion entropy for DJI for a short time lag, while smoother or averaged fluctuations occur over larger time lags.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multifractal Diffusion Entropy Analysis: Applications to Financial Time Series
    Jizba, Petr
    Korbel, Jan
    [J]. INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 87 - 96
  • [2] Multiscale multifractal diffusion entropy analysis of financial time series
    Huang, Jingjing
    Shang, Pengjian
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 420 : 221 - 228
  • [3] Multifractal diffusion entropy analysis on stock volatility in financial markets
    Huang, Jingjing
    Shang, Pengjian
    Zhao, Xiaojun
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (22) : 5739 - 5745
  • [4] Multiscale multifractal multiproperty analysis of financial time series based on Renyi entropy
    Yang Yujun
    Li Jianping
    Yang Yimei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (02):
  • [5] Multifractal weighted permutation analysis based on Renyi entropy for financial time series
    Liu, Zhengli
    Shang, Pengjian
    Wang, Yuanyuan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 536
  • [6] Multifractal statistical analysis of financial time series
    Yuan, Ying
    Zhuang, Xin-Tian
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3609 - +
  • [7] Weighted multifractal analysis of financial time series
    Hui Xiong
    Pengjian Shang
    [J]. Nonlinear Dynamics, 2017, 87 : 2251 - 2266
  • [8] Weighted multifractal analysis of financial time series
    Xiong, Hui
    Shang, Pengjian
    [J]. NONLINEAR DYNAMICS, 2017, 87 (04) : 2251 - 2266
  • [9] Multifractal regime detecting method for financial time series
    Lee, Hojin
    Chang, Woojin
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 70 : 117 - 129
  • [10] Comment on 'multifractal diffusion entropy analysis on stock volatility in financial markets' [Physica A 391 (2012) 5739-5745]
    Morozov, A. Yu.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (10) : 2442 - 2446