Advancing precision fermentation: Minimizing power demand of industrial scale bioreactors through mechanistic modelling

被引:3
|
作者
Jahanian, Ali [1 ,2 ,3 ]
Ramirez, Jerome [1 ,2 ,3 ]
O'Hara, Ian [1 ,2 ,3 ,4 ]
机构
[1] Queensland Univ Technol, Fac Engn, Sch Mech Med & Proc Engn, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Fac Sci, Ctr Agr & Bioecon, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ctr Excellence Synthet Biol, Brisbane, Qld, Australia
[4] Queensland Univ Technol, ARC Ind Transformat Training Ctr Bioplast & Biocom, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
Bioreactor; Precision fermentation; Power consumption; Industrial-scale; Optimization; OXYGEN MASS-TRANSFER; TRANSFER COEFFICIENT; STIRRED-TANK; THEORETICAL PREDICTION; BUBBLE-COLUMN; GAS; CONSUMPTION; AGITATION; AERATION; ENERGY;
D O I
10.1016/j.compchemeng.2024.108755
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Minimizing power consumption in large-scale aerobic fermentation is essential for cost-effective operations. A mechanistic model of aerobic precision fermentation was developed integrating microbial growth parameters, thermodynamic data, and bioreactor properties. Results showed that agitation power dominated energy consumption at low oxygen transfer rates ( OTR ), shifting to aeration power (70 % of total) at high cell growth rates. In high OTRs , mixing time reduced to 60 s from an initial value of 211 s. Scale-up from 5 m 3 to 100 m 3 decreased total specific power by 88 %. Operating at elevated headspace pressure lowered agitation speed, reducing total power consumption at high OTR . Impeller to bioreactor diameter ratio impacted the required agitation speed without significantly altering total power demand. Experimental data in a 100 L case study indicated a 0.43 kW. m - 3 average power requirement across a 96-hour fermentation period. Our model demonstrates effective strategies for minimization of power consumption in industrial-scale aerobic fermentations.
引用
收藏
页数:15
相关论文
共 32 条
  • [1] Penicillin fermentation: Mechanisms and models for industrial-scale bioreactors
    Patnaik, PR
    CRITICAL REVIEWS IN MICROBIOLOGY, 2001, 27 (01) : 25 - 39
  • [2] Penicillin fermentation: Mechanisms and models for industrial-scale bioreactors
    Patnaik, PR
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2000, 20 (01) : 1 - 15
  • [3] Modelling of industrial-scale bioreactors using the particle lifeline approach
    Nadal-Rey, Gisela
    Kavanagh, John M.
    Cassells, Benny
    Cornelissen, Sjef
    Fletcher, David F.
    Gernaey, Krist V.
    McClure, Dale D.
    BIOCHEMICAL ENGINEERING JOURNAL, 2023, 198
  • [4] Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements
    Gao, Wenpei
    Hood, Zachary D.
    Chi, Miaofang
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) : 787 - 795
  • [5] Modelling of the oxygen level response to feed rate perturbations in an industrial scale fermentation process
    Johnsson, Ola
    Andersson, Jonas
    Liden, Gunnar
    Johnsson, Charlotta
    Hagglund, Tore
    PROCESS BIOCHEMISTRY, 2015, 50 (04) : 507 - 516
  • [6] Particle size distribution of chemical oxygen demand in industrial effluents: impact on effective filtration size and modelling of membrane bioreactors
    Dogruel, Serdar
    Orhon, Derin
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2021, 96 (07) : 1777 - 1784
  • [7] Mechanistic modelling of industrial-scale roller compactor 'Freund TF-MINI model'
    Sajjia, M.
    Shirazian, Saeed
    Egan, David
    Iqbal, Javed
    Albadarin, Ahmad B.
    Southern, Mark
    Walker, Gavin
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 104 : 141 - 150
  • [8] Conceptual design and modelling of an industrial scale power to gas-oxy-combustion power plant
    Kezibri, Nouaamane
    Bouallou, Chakib
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (30) : 19411 - 19419
  • [9] Mathematical modelling of circulating fluidized bed combustion in industrial scale power plants
    Hannes, J.
    Renz, U.
    van den Bleek, C.M.
    VGB-Kraftwerkstechnik, 1998, 78 (02): : 55 - 62
  • [10] All-scale Modelling of Wind Generation and Responsive Demand in Power System Studies
    Hayes, Barry P.
    Collin, Adam J.
    Hernando-Gil, Ignacio
    Acosta, Jorge L.
    Hawkins, Sam
    Harrison, Gareth P.
    Djokic, Sasa Z.
    2012 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2012,