EDITORIAL: Chemical Compound Space Exploration by Multiscale High-Throughput Screening and Machine Learning

被引:0
|
作者
Gryn'ova, Ganna
Bereau, Tristan
Muller, Carolin
Friederich, Pascal
Wade, Rebecca C.
Nunes-Alves, Ariane
Soares, Thereza A.
Merz Jr, Kenneth
机构
[1] School of Chemistry, University of Birmingham, Birmingham,B15 2TT, United Kingdom
[2] Institute for Theoretical Physics, Heidelberg University, Heidelberg,69120, Germany
[3] Computer-Chemistry-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, Erlangen,91052, Germany
[4] Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Kaiserstr. 12, Karlsruhe,76131, Germany
[5] Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstr. 12, Karlsruhe,76131, Germany
[6] Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg,69118, Germany
[7] Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 329, Heidelberg,69120, Germany
[8] Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg,69120, Germany
[9] Institute of Chemistry, Technische Universität Berlin, Berlin,10623, Germany
[10] Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto,14040-901, Brazil
[11] Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo,0315, Norway
[12] Department of Chemistry, Michigan State University, Michigan,48824, United States
基金
欧洲研究理事会; 巴西圣保罗研究基金会;
关键词
D O I
10.1021/acs.jcim.4c01300
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
引用
收藏
页码:5737 / 5738
页数:2
相关论文
共 50 条
  • [1] Exploration of the nanomedicine-design space with high-throughput screening and machine learning
    Mirkin, Chad
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [2] Exploration of the nanomedicine-design space with high-throughput screening and machine learning
    Gokay Yamankurt
    Eric J. Berns
    Albert Xue
    Andrew Lee
    Neda Bagheri
    Milan Mrksich
    Chad A. Mirkin
    [J]. Nature Biomedical Engineering, 2019, 3 : 318 - 327
  • [3] Exploration of the nanomedicine-design space with high-throughput screening and machine learning
    Yamankurt, Gokay
    Berns, Eric J.
    Xue, Albert
    Lee, Andrew
    Bagheri, Neda
    Mrksich, Milan
    Mirkin, Chad A.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2019, 3 (04) : 318 - 327
  • [4] Application of machine learning for high-throughput tumor marker screening
    Fu, Xingxing
    Ma, Wanting
    Zuo, Qi
    Qi, Yanfei
    Zhang, Shubiao
    Zhao, Yinan
    [J]. LIFE SCIENCES, 2024, 348
  • [5] High-throughput screening of bimetallic catalysts enabled by machine learning
    Li, Zheng
    Wang, Siwen
    Chin, Wei Shan
    Achenie, Luke E.
    Xin, Hongliang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (46) : 24131 - 24138
  • [6] A high-throughput platform for efficient exploration of functional polypeptide chemical space
    Wu, Guangqi
    Zhou, Haisen
    Zhang, Jun
    Tian, Zi-You
    Liu, Xingyi
    Wang, Shuo
    Coley, Connor W.
    Lu, Hua
    [J]. NATURE SYNTHESIS, 2023, 2 (06): : 515 - 526
  • [7] A high-throughput platform for efficient exploration of functional polypeptide chemical space
    Guangqi Wu
    Haisen Zhou
    Jun Zhang
    Zi-You Tian
    Xingyi Liu
    Shuo Wang
    Connor W. Coley
    Hua Lu
    [J]. Nature Synthesis, 2023, 2 : 515 - 526
  • [8] Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening
    Collins, Sean P.
    Barton-Maclaren, Tara S.
    [J]. FRONTIERS IN TOXICOLOGY, 2022, 4
  • [9] Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes
    Zhu, Xinzhe
    Ho, Chi-Hung
    Wang, Xiaonan
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (30) : 11141 - 11151
  • [10] Machine learning for high-throughput experimental exploration of metal halide perovskites
    Ahmadi, Mahshid
    Ziatdinov, Maxim
    Zhou, Yuanyuan
    Lass, Eric A.
    Kalinin, Sergei, V
    [J]. JOULE, 2021, 5 (11) : 2797 - 2822