3D vat photopolymerization printing of hydrophilic silicone-based microfluidic devices and the effect of cellulose nanocrystals as additives for improved printing accuracy

被引:2
|
作者
Wong, Li Yan [1 ,2 ]
Ganguly, Sayan [1 ,2 ]
Tang, Xiaowu [1 ,2 ,3 ,4 ]
机构
[1] Univ Waterloo, Waterloo Inst Nanotechnol WIN, Dept Chem, Waterloo, ON, Canada
[2] Ctr Eye & Vis Res CEVR, 17W Hong Kong Sci Pk, Hong Kong, Peoples R China
[3] Univ Waterloo, Dept Chem, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Waterloo Inst Nanotechnol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Microfluidics; Hydrophilic silicone; Cellulose nanocrystal; Organic solvent-resistant; Vat photopolymerization; SOLVENT-RESISTANT; POLYACRYLAMIDE; LIGHT; DEGRADATION;
D O I
10.1016/j.addma.2024.104177
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The lack of an ideal silicone-based ink material with optimal printability has significantly limited the potential to fabricate silicone-based microfluidic devices via 3D vat photopolymerization (VPP) printing. Oftentimes, photoabsorbers are incorporated into the ink material for better control of the photocuring depth in order to avoid excessive curing of unwanted parts. However, the search for a suitable photoabsorber without staining the ink material remains challenging due to the need to retain the clear interface in the final printed product. Herein, we present the fabrication of highly precise and transparent microfluidic devices using hydrophilic silicone-based ink via 3D VPP printing upon photocuring depth adjustment with cellulose nanocrystals (CNC). With the optimal CNC content, the ink material demonstrates enhanced printing accuracy with highly precise replication of channel patterns consisting of near zero deviation in width dimension down to 100 mu m. Moreover, the addition of optimal CNC content exhibits no distinct final color and has no negative impact on the pre-gel viscosity and the gel point of the developed ink material. Moving on, the printed devices exhibit excellent fluid manipulation with various solvents for up to 24 hours, with incubation temperature up to 100 degrees C for 5 hours, and with a continuous flow rate up to 20 mL/min. The sustainable hydrophilicity, good organic solvent resistance, and excellent biocompatibility properties of the printed material further eliminate the need for additional surface modification to suit its application with either organic solvents or biological cells. To the best of our knowledge, the approach to tuning the photocuring depth of ink material with CNC is not widely reported. Besides, the successful fabrication of a highly detailed, neutral-colored, and highly functional hydrophilic silicone-based microfluidic device via 3D VPP printing upon the incorporation of CNC introduces a new avenue in terms of printing material and fabrication method for the mass production of microfluidic devices.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Review of vat photopolymerization 3D printing of photonic devices
    Chekkaramkodi, Dileep
    Jacob, Liya
    Shebeeb, C. Muhammed
    Umer, Rehan
    Butt, Haider
    ADDITIVE MANUFACTURING, 2024, 86
  • [2] Hydrophilic silicone-based ink derived from amphiphilic siloxane oligomers for the vat photopolymerization printing of embedded-channel fluidic devices
    Wong, Li Yan
    Ganguly, Sayan
    Tang, Xiaowu
    ADDITIVE MANUFACTURING, 2025, 100
  • [3] Vat Photopolymerization 3D Printing Hydrogels and Bionic Adhesive Devices: A Minireview
    Shi, Lei
    Wang, Yixian
    Xu, Xin
    Liu, Desheng
    Ji, Zhongying
    Wang, Xiaolong
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (11)
  • [4] Warpage correction for vat photopolymerization 3D printing
    Lee, Taehyub
    Ng, Chin Siang
    Su, Pei-Chen
    ADDITIVE MANUFACTURING, 2025, 102
  • [5] 3D Printing Method of Gun Propellants Based on Vat Photopolymerization
    Hu R.
    Yang W.-T.
    Jiang Z.-X.
    Yu X.-F.
    Wang Q.-L.
    Huozhayao Xuebao/Chinese Journal of Explosives and Propellants, 2020, 43 (04): : 368 - 371and382
  • [6] Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability
    Ji, Zhongying
    Xu, Bingang
    Su, Zhiyong
    Wang, Xiaochen
    Lyu, Yang
    Liu, Sen
    Wu, Tao
    Wang, Xiaolong
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2025, 7 (02)
  • [7] Dual-vat photopolymerization 3D printing of vitrimers
    Shaukat, Usman
    Thalhamer, Andreas
    Rossegger, Elisabeth
    Schloegl, Sandra
    ADDITIVE MANUFACTURING, 2024, 79
  • [8] 3D/4D Printing of Polyurethanes by Vat Photopolymerization
    Mauriello, Jessica
    Maury, Romain
    Guillaneuf, Yohann
    Gigmes, Didier
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (23)
  • [9] A silicone-based support material eliminates interfacial instabilities in 3D silicone printing
    Duraivel, Senthilkumar
    Laurent, Dimitri
    Rajon, Didier A.
    Scheutz, Georg M.
    Shetty, Abhishek M.
    Sumerlin, Brent S.
    Banks, Scott A.
    Bova, Frank J.
    Angelini, Thomas E.
    SCIENCE, 2023, 379 (6638) : 1248 - 1252
  • [10] 3D printing of cellulose nanocrystals and nanocomposites
    Siqueira, Gilberto
    Kokkinis, Dimitri
    Libanori, Rafael
    Hausmann, Michael
    Gladman, Sydney
    Neels, Antonia
    Tingaut, Philippe
    Zimmermann, Tanja
    Lewis, Jennifer
    Studart, Andre R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253