Towards Improving Phishing Detection System Using Human in the Loop Deep Learning Model

被引:0
|
作者
Asiri, Sultan [1 ]
Xiao, Yang [1 ]
Alzahrani, Saleh [1 ]
机构
[1] Univ Alabama, Tuscaloosa, AL 35487 USA
关键词
Phishing Attacks; Real-time; Detection Systems; Deep Learning; Tiny Uniform Resource Locators; Browsers in the Browser (BiTB); Active Learning;
D O I
10.1145/3603287.3651193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Phishing attacks are cyber attacks that deceive victims into revealing sensitive information or downloading malware. They serve as a gateway to various malware attacks, including ransomware attacks. These attacks cause millions of dollars in losses for individuals and organizations annually. The frequency of phishing attacks continues to rise, with attackers constantly developing new techniques to bypass detection systems. One example is hidden malicious links within seemingly legitimate web pages, making them difficult for humans to detect, such as browser-in-the-browser attacks (BiTB). Therefore, relying solely on fixed detection systems can make one vulnerable to phishing attacks. Therefore, the critical need for a system that can continuously improve over time arises. This paper proposes enhancing a detection system by incorporating human feedback. To achieve this, we have designed a human-in-the-loop deep learning active system that uses human feedback to enhance the model's performance. We use PhishTransformer as our initial model. We then gathered new data for testing and accessed it through our browser extension. Subsequently, we collect new data for each version of the model. The initial model is retrained three times with the new data, saving the model after each iteration. We then retest the model using the test data and train the next version. The evaluation of each model version is based on the following metrics: accuracy, loss, precision, recall, and F1 score. Our model shows an improvement of around 5% of all metrics from the base model into the Version 3 model.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [1] Phishing Email Detection Model Using Deep Learning
    Atawneh, Samer
    Aljehani, Hamzah
    ELECTRONICS, 2023, 12 (20)
  • [2] PhishingRTDS: A real-time detection system for phishing attacks using a Deep Learning model
    Asiri, Sultan
    Xiao, Yang
    Alzahrani, Saleh
    Li, Tieshan
    COMPUTERS & SECURITY, 2024, 141
  • [3] Phishing Attack Detection Using Deep Learning
    Alzahrani, Sabah M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (12): : 213 - 218
  • [4] DEPHIDES: Deep Learning Based Phishing Detection System
    Sahingoz, Ozgur Koray
    Buber, Ebubekir
    Kugu, Emin
    IEEE ACCESS, 2024, 12 : 8052 - 8070
  • [5] Deep Learning for Phishing Detection
    Yao, Wenbin
    Ding, Yuanhao
    Li, Xiaoyong
    2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS, 2018, : 645 - 650
  • [6] An intelligent cyber security phishing detection system using deep learning techniques
    Mughaid, Ala
    AlZu'bi, Shadi
    Hnaif, Adnan
    Taamneh, Salah
    Alnajjar, Asma
    Abu Elsoud, Esraa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3819 - 3828
  • [7] Phishing URL Detection Using Machine Learning and Deep Learning
    Ferdaws, Rawshon
    Majd, Nahid Ebrahimi
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0485 - 0490
  • [8] An intelligent cyber security phishing detection system using deep learning techniques
    Ala Mughaid
    Shadi AlZu’bi
    Adnan Hnaif
    Salah Taamneh
    Asma Alnajjar
    Esraa Abu Elsoud
    Cluster Computing, 2022, 25 : 3819 - 3828
  • [9] Phishing Website Detection Using Deep Learning Models
    Zara, Ume
    Ayyub, Kashif
    Khan, Hikmat Ullah
    Daud, Ali
    Alsahfi, Tariq
    Ahmad, Saima Gulzar
    IEEE ACCESS, 2024, 12 : 167072 - 167087
  • [10] Web Phishing Detection Using a Deep Learning Framework
    Yi, Ping
    Guan, Yuxiang
    Zou, Futai
    Yao, Yao
    Wang, Wei
    Zhu, Ting
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,