A computer vision approach to estimate the localized sea state

被引:0
|
作者
Vorkapic, Aleksandar [1 ,2 ]
Pobar, Miran [1 ,2 ]
Ivasic-Kos, Marina [1 ,2 ]
机构
[1] Univ Rijeka, Fac Informat & Digital Technol, Rijeka 51000, Croatia
[2] Univ Rijeka, Ctr Artificial Intelligence, Rijeka 51000, Croatia
关键词
Energy efficient shipping; Computer vision; Sea state recognition; Deep neural networks; Real-time monitoring;
D O I
10.1016/j.oceaneng.2024.118318
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This research presents a novel application of computer vision (CV) and deep learning methods for real-time sea state recognition, aiming to contribute to improving the operational safety and energy efficiency of seagoing vessels, key factors in meeting the legislative carbon reduction targets. Our work focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge. The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale. To recognize the sea state, we used 4 state-of-the-art deep neural networks with different characteristics that proved useful in various computer vision tasks: Resnet-101, NASNet, MobileNet_v2, and Transformer ViT -b32. Furthermore, we have defined a unique large-scale dataset, collected over a broad range of sea conditions from an ocean-going vessel prepared for machine learning. We used the transfer learning approach to fine-tune the models on our dataset. The obtained results demonstrate the potential for this approach to complement traditional methods, particularly where in-situ measurements are unfeasible or interpolated weather buoy data is insufficiently accurate. This study sets the groundwork for further development of sea state classification models to address recognized gaps in maritime research and enable safer and more efficient maritime operations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Design of a computer vision system to estimate tool wearing
    Alegre, E.
    Barreiro, J.
    Caceres, H.
    Hernandez, L. K.
    Fernandez, R. A.
    Castejon, M.
    ADVANCES IN MATERIALS PROCESSING TECHNOLOGIE, 2006, 526 : 61 - 66
  • [2] Using Explanations to Estimate the Quality of Computer Vision Models
    Oliveira, Filipe
    Carneiro, Davide
    Pereira, Joao
    HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT, 2025, : 293 - 301
  • [3] A Neuromorphic Approach to Computer Vision
    Serre, Thomas
    Poggio, Tomaso
    COMMUNICATIONS OF THE ACM, 2010, 53 (10) : 54 - 61
  • [4] A computer vision approach based on the retinal nerve fiber thickness analysis to estimate the risk of suffering glaucoma
    Chazi-Solis, M.
    Cajamarca-Bueno, C.
    Pinos-Velez, E.
    Robles-Bykbaev, V
    Luis Chacon, Carlos
    2018 CONGRESO INTERNACIONAL DE INNOVACION Y TENDENCIAS EN INGENIERIA (CONIITI), 2018,
  • [5] The State of Computer Vision Research in Africa
    Omotayo, Abdul-Hakeem
    Mbilinyi, Ashery
    Ismaila, Lukman E.
    Turki, Houcemeddine
    Abdien, Mahmoud
    Gamal, Karim
    Tondji, Idriss
    Pimi, Yvan
    Etori, Naome A.
    Matar, Marwa M.
    Broni-Bediako, Clifford
    Oppong, Abigail
    Gamal, Mai
    Ehab, Eman
    Dovonon, Gbetondji
    Akinjobi, Zainab
    Ajisafe, Daniel
    Adegboro, Oluwabukola G.
    Siam, Mennatullah
    Journal of Artificial Intelligence Research, 2024, 81 : 43 - 69
  • [6] The State of Computer Vision Research in Africa
    Omotayo, Abdul-Hakeem
    Mbilinyi, Ashery
    Ismaila, Lukman E.
    Turki, Houcemeddine
    Abdien, Mahmoud
    Gamal, Karim
    Tondji, Idriss
    Pimi, Yvan
    Etori, Naome A.
    Matar, Marwa M.
    Broni-Bediako, Clifford
    Oppong, Abigail
    Gamal, Mai
    Ehab, Eman
    Dovonon, Gbetondji
    Akinjobi, Zainab
    Ajisafe, Daniel
    Adegboro, Oluwabukola G.
    Siam, Mennatullah
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2024, 81 : 43 - 69
  • [7] The State of Computer Vision Research in Africa
    Omotayo, Abdul-Hakeem
    Mbilinyi, Ashery
    Ismaila, Lukman E.
    Turki, Houcemeddine
    Abdien, Mahmoud
    Gamal, Karim
    Tondji, Idriss
    Pimi, Yvan
    Etori, Naome A.
    Matar, Marwa M.
    Broni-Bediako, Clifford
    Oppong, Abigail
    Gamal, Mai
    Ehab, Eman
    Dovonon, Gbetondji
    Akinjobi, Zainab
    Ajisafe, Daniel
    Adegboro, Oluwabukola G.
    Siam, Mennatullah
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2024, 80 : 43 - 69
  • [8] A computer vision approach for textile inspection
    Conci, A
    Proença, CB
    TEXTILE RESEARCH JOURNAL, 2000, 70 (04) : 347 - 350
  • [9] A computer vision approach to airflow analysis
    Heikkonen, J
    PATTERN RECOGNITION LETTERS, 1996, 17 (04) : 369 - 385
  • [10] A computer vision approach for trajectory classification
    Kontopoulos, Ioannis
    Makris, Antonios
    Zissis, Dimitris
    Tserpes, Konstantinos
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 163 - 168