Branched alumina filled epoxy resin and finite element simulation

被引:0
|
作者
Yao, Xiong [1 ]
Wang, Xiaojian [2 ]
Dong, Yanfang [1 ,3 ]
Zhang, Rui [1 ]
Zhang, Zhaoxian [1 ]
Liang, Caihang [1 ]
机构
[1] Guilin Univ Elect Sci & Technol, Guiin, Peoples R China
[2] Xinjiang Univ, Xinjiang, Peoples R China
[3] Guilin Univ Aerosp Technol, Guiin, Peoples R China
关键词
alumina; thermal conductivity channel; finite element simulation; heat dissipation; THERMAL-CONDUCTIVITY;
D O I
10.1109/ICEPT59018.2023.10492085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the modernization of electronic devices, the requirements for thermal conductivity and heat dissipation materials for high-power electronic devices are increasing, and the study of new thermally conductive materials for electronic packaging is of great importance to solving this "hot spot" problem. This paper describes the use of high-temperature sintering of micron-sized alumina, the bonding of sintered branched alumina (b-Al2O3) to an epoxy resin (EP) matrix, and the preparation of b-Al2O3/EP composites. When the filling mass fraction of b-Al2O3 was 60%, the thermal conductivity of the composites reached 0.86 W/(m. K), 570% improvement in thermal conductivity compared to pure epoxy resin, and the resistivity of the composites was 2.2x10(13) Omega center dot m. The geometric model of representative units was established by a stochastic algorithm, the model restores the random distribution state of filler particles in the epoxy resin matrix, the errors due to the artificial setting of the geometric model are reduced; and the internal thermal conductivity transfer process of the composite is analyzed by finite element simulation. The efficient thermal conductivity of the b-Al2O3 thermal channel is revealed, and the better thermal conductivity and electrical insulation properties of b-Al2O3/ EP are demonstrated.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Finite Element Simulation of Indentation Experiment on Branched Epoxy Novolac Resin
    Kovalovs, Andrejs
    Chate, Andris
    Gaidukovs, Sergejs
    Medvids, Arturs
    INTERNATIONAL CONFERENCE BALTIC POLYMER SYMPOSIUM 2018, 2019, 500
  • [2] Effect of branched alumina on thermal conductivity of epoxy resin
    Long, Yu
    Shi, Lirui
    Wang, Qingyu
    Qu, Haitao
    Hao, Chuncheng
    Lei, Qingquan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 120 : 209 - 215
  • [3] Sand erosion behaviour of alumina - Filled epoxy resin
    Saputra, AH
    Kubouchi, M
    Tsuda, K
    Arai, K
    Mitomo, N
    ADVANCED COMPOSITES LETTERS, 1999, 8 (02) : 71 - 75
  • [4] Treeing breakdown voltage and TSC of alumina filled epoxy resin
    Fujita, S
    Ruike, M
    Baba, M
    IEEE 1996 ANNUAL REPORT - CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, VOLS I & II, 1996, : 738 - 741
  • [5] Alumina Nanoparticle Filled Epoxy Resin: High Strain Rate Compressive Behavior
    Naik, N. K.
    Pandya, Kedar S.
    Kavala, V. R.
    Zhang, W.
    Koratkar, N. A.
    POLYMER ENGINEERING AND SCIENCE, 2014, 54 (12): : 2896 - 2901
  • [6] Finite element simulation of resin infusion processes
    Simulation par éléments finis des procédés par infusion de résine
    Bruchon, J. (bruchon@emse.fr), 1600, Lavoisier (37): : 2 - 4
  • [7] Investigation into using finite element analysis for epoxy resin joints
    Williamson, C.
    Daadbin, A.
    Materials and Design, 1993, 14 (02): : 91 - 95
  • [8] Amber filled with epoxy resin
    Ambalathveettil, Nazar Ahmed
    Al Muhari, Nahla Yaqub
    Ali, Sameera Mohammed
    GEMS & GEMOLOGY, 2022, 58 (01): : 132 - 133
  • [9] Erosive wear characteristics of high-alumina cenospheres filled epoxy resin composites
    Chen, Ping
    Ma, Feng
    Mei, Hua-Feng
    Zhao, Hai-Lin
    She, Jian-Min
    Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2014, 36 (02): : 218 - 225
  • [10] Finite element simulation of vickers microindentation on alumina ceramics
    Niezgoda, T
    Malachowski, J
    Boniecki, M
    CERAMICS INTERNATIONAL, 1998, 24 (05) : 359 - 364