Communication Optimization for Multi-agent Reinforcement Learning-based Traffic Control System with Explainable Protocol

被引:0
|
作者
Wang, Han [1 ,2 ]
Wu, Haochen [3 ]
Lu, Juanwu [4 ]
Tang, Fang [5 ]
Delle Monache, Maria Laura [2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[3] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI USA
[4] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[5] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies the challenges of multi-agent traffic control systems with a specific focus on the feasibility of communication protocols. We present an innovative approach for optimizing communication in large-scale traffic control systems. In the context of ramp metering coordination, we design and analyze the proposed communication protocols. The first protocol operates without explicit semantic interpretation, providing a baseline for performance. The second builds on the concept of advantageous directions, integrating semantic meaning into communication for enhanced explainability. Comparative results show that our proposed system outperforms the ALINEA algorithm under both protocols. Despite the slightly superior performance of the non-semantic protocol, the advantageous direction protocol yields more interpretable and meaningful results, thereby underscoring the crucial role of explainability in deep learning models. Our approach offers novel insights for the development of interpretable machine learningbased traffic control algorithms. The broader implication of this study emphasizes the importance of addressing communication feasibility in large-scale traffic control systems, illuminating the path toward more efficient, scalable traffic control solutions.
引用
收藏
页码:6068 / 6073
页数:6
相关论文
共 50 条
  • [1] Reinforcement learning-based multi-agent system for network traffic signal control
    Arel, I.
    Liu, C.
    Urbanik, T.
    Kohls, A. G.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2010, 4 (02) : 128 - 135
  • [2] Communication Information Fusion Based Multi-Agent Reinforcement Learning for Adaptive Traffic Light Control
    Xu, Jixiang
    Li, Lulu
    Zhu, Ruijie
    Lv, Ping
    2023 3rd International Conference on Neural Networks, Information and Communication Engineering, NNICE 2023, 2023, : 488 - 492
  • [3] Multi-agent Reinforcement Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Kumar, Hemanth A. N.
    Bhatnagar, Shalabh
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2529 - 2534
  • [4] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793
  • [5] A Multi-agent Reinforcement Learning-Based Transmission Protocol for Underwater Acoustic Networks
    Gao, Yu
    Bi, Zhicheng
    Wang, Chaofeng
    17TH ACM INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS, WUWNET 2023, 2024,
  • [6] Multi-agent Reinforcement Learning-Based UAS Control for Logistics Environments
    Jo, Hyungeun
    Lee, Hoeun
    Jeon, Sangwoo
    Kaliappan, Vishnu Kumar
    Nguyen, Tuan Anh
    Min, Dugki
    Lee, Jae-Woo
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 2, 2023, 913 : 963 - 972
  • [7] Multi-Agent Reinforcement Learning for Coordinating Communication and Control
    Mason, Federico
    Chiariotti, Federico
    Zanella, Andrea
    Popovski, Petar
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (04) : 1566 - 1581
  • [8] MAPS: Multi-agent Reinforcement Learning-based Portfolio Management System
    Lee, Jinho
    Kim, Raehyun
    Yi, Seok-Won
    Kang, Jaewoo
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 4520 - 4526
  • [9] Multi-agent Reinforcement Learning-based Network Intrusion Detection System
    Tellache, Amine
    Mokhtari, Amdjed
    Korba, Abdelaziz Amara
    Ghamri-Doudane, Yacine
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [10] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658