Experimental nonlinear model of a set of connecting elements in view of nonlinear modal coupling

被引:0
|
作者
Brunetti, Jacopo [1 ]
D'Ambrogio, Walter [1 ]
Fregolent, Annalisa [2 ]
Latini, Francesco [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn Ind & Informaz & Econ, Piazzale E Pontieri 1, I-67100 Laquila, AQ, Italy
[2] Univ Roma La Sapienza, Dipartimento Ingn Meccan & Aerosp, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Nonlinear connection; Nonlinear normal modes; Experimental characterization; IDENTIFICATION;
D O I
10.1016/j.ymssp.2024.111437
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The development process of mechanical systems involves the evaluation of its modes of vibrations in the frequency range of interest. In general, a linear modal analysis is sufficient to determine whether the system can operate in dynamic conditions. However, in some cases the assembly is composed of many subsystems connected through nonlinear connections which make the response depend on the amplitude and frequency of the excitation. In those cases, Linear Normal Modes (LNMs) are not sufficient to fully describe the dynamics of the system and Nonlinear Normal Modes (NNMs) must be used. Using substructuring techniques it is possible to treat nonlinear joints as independent subsystems. However, a reliable nonlinear model is needed to use this approach. The experimental characterization is the only way to correctly estimate the nonlinear behavior of the connection. Thus, the aim of this work is to develop and validate the experimental characterization to build an experimental nonlinear modal model of a strongly nonlinear element that can be used to connect different linear subsystems and can be regarded as a localized source of nonlinearity. The NNMs identification is performed using the single -point single-harmonic phase resonance method, and the experimental nonlinear modal model of the NLCE is obtained by retaining only the first harmonic term of each NNM in order to get nearly uncoupled modal equations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Substructures' coupling with nonlinear connecting elements
    Latini, Francesco
    Brunetti, Jacopo
    D'Ambrogio, Walter
    Fregolent, Annalisa
    NONLINEAR DYNAMICS, 2020, 99 (02) : 1643 - 1658
  • [2] Substructures’ coupling with nonlinear connecting elements
    Francesco Latini
    Jacopo Brunetti
    Walter D’Ambrogio
    Annalisa Fregolent
    Nonlinear Dynamics, 2020, 99 : 1643 - 1658
  • [3] Experimental results of nonlinear structure coupled through nonlinear connecting elements
    Latini, F.
    Brunetti, J.
    Kwarta, M.
    Allen, M. S.
    D'Ambrogio, W.
    Fregolent, A.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 3011 - 3022
  • [4] EXPERIMENTAL INVESTIGATION OF NONLINEAR MODAL COUPLING IN THE RESPONSE OF CANTILEVER BEAMS
    ZARETZKY, CL
    DASILVA, MRMC
    JOURNAL OF SOUND AND VIBRATION, 1994, 174 (02) : 145 - 167
  • [5] Influence of Modal Coupling on the Nonlinear Dynamics of Augusti's Model
    Orlando, Diego
    Goncalves, Paulo B.
    Rega, Giuseppe
    Lenci, Stefano
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (04):
  • [6] INFLUENCE OF MODAL COUPLING ON THE NONLINEAR DYNAMICS OF AUGUSTI'S MODEL
    Goncalves, Paulo B.
    Orlando, Diego
    Rega, Giuseppe
    Lenci, Stefano
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1351 - 1358
  • [7] Experimental Modal Substructuring with Nonlinear Modal Iwan Models to Capture Nonlinear Subcomponent Damping
    Allen, Matthew S.
    Roettgen, Daniel
    Kammer, Daniel
    Mayes, Randy
    DYNAMICS OF COUPLED STRUCTURES, VOL 4, 34TH IMAC, 2016, : 47 - 55
  • [8] Nonlinear Finite Element Model Updating, Part I: Experimental Techniques and Nonlinear Modal Model Parameter Extraction
    Pacini, Benjamin R.
    Mayes, Randall L.
    Owens, Brian C.
    Schultz, Ryan A.
    DYNAMICS OF COUPLED STRUCTURES, VOL 4, 2017, : 262 - 273
  • [9] A nonlinear frequency domain model for limit cycles in thermoacoustic systems with modal coupling
    Selimefendigil, Fatih
    Polifke, Wolfgang
    INTERNATIONAL JOURNAL OF SPRAY AND COMBUSTION DYNAMICS, 2011, 3 (04) : 303 - 330
  • [10] STRUMMING OF NONLINEAR CABLE ELEMENTS USING MODAL SUPERPOSITION
    TUAH, H
    LEONARD, JW
    ENGINEERING STRUCTURES, 1992, 14 (05) : 282 - 290