Array strategy enhances low-frequency radiation intensity and low-frequency magnetic field sensing SNR of magnetoelectric antenna

被引:0
|
作者
Wang, Yinan [1 ,2 ]
Zi, Guohao [1 ,2 ]
Song, Enzhong [1 ,2 ]
Wang, Yuanhang [1 ,2 ]
Zhao, Shanlin [1 ,2 ]
Ma, Zhibo [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Minist Educ, Key Lab Micro Nano Syst Aerosp, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab MEMS NEMS, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
COMMUNICATION;
D O I
10.1063/5.0219109
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The magnetoelectric (ME) coupling effect is a more effective approach for reducing antenna size. Nevertheless, at low frequencies, a single ME structure generates a weak signal strength and a low signal-to-noise ratio (SNR). This study utilized an array strategy to improve the radiation and induced electromagnetic field performance of ME antennas. In this study, the array ME coupling structure, composed of Metglas and Pb (Zr1-xTix) O-3 (PZT) bilayers, was operated through ME coupling resonance modes. The relationship between the sensitivity and SNR of the serially connected ME antenna array and the number of series connections was determined. On the transmission side, the impact of the multi-source power supply modes on the radiation intensity and directivity of the ME antennas was analyzed. The sensitivity, SNR, magnetic detection limit, directivity, and radiation range of the single ME and array ME antennas were tested for the key parameters. Finally, it was demonstrated that at a frequency of 31.75 kHz, the array strategy achieved a low-frequency signal transmission distance of up to 48.1 m, which is 1.7 times that of a single ME antenna. This array strategy significantly enhances the radiation intensity and magnetic field SNR of ME antennas in the low-frequency range, demonstrating its application prospects in the field of low-frequency communication.<br /> (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Low-frequency magnetic field detection for metal sensing
    Kiwa, Toshihiko
    Kawata, Tomoaki
    Tsukada, Keiji
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2007, 25 (1-4) : 447 - 451
  • [2] Dual magnetoelectric antenna array with enhanced bandwidth and sensitivity for low-frequency communications
    Wang, Yinan
    Song, Enzhong
    Zi, Guohao
    Wang, Yuanhang
    Zhao, Shanlin
    Ma, Zhibo
    [J]. Journal of Applied Physics, 2024, 136 (18)
  • [3] Effects of Amplitude and Frequency of the Modulation Field on the Sensitivity for Low-Frequency Magnetic Field in Magnetoelectric Sensors
    Sun, Xuan
    Wu, Jingen
    Liang, Xianfeng
    Du, Yongjun
    Xu, Yiwei
    Qu, Yuhan
    Guan, Mengmeng
    Huang, Hui
    Li, Fuchao
    Liu, Sujie
    Ju, Dengfeng
    Wang, Zhiguang
    Hu, Zhongqiang
    Guo, Jinghong
    Liu, Ming
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (12) : 12695 - 12701
  • [4] Radiated Magnetic Field of a Low-Frequency Ferrite Rod Antenna
    Stadler, Alexander
    [J]. 2011 7TH INTERNATIONAL CONFERENCE-WORKSHOP COMPATIBILITY AND POWER ELECTRONICS (CPE), 2011, : 283 - 288
  • [5] LOW-FREQUENCY ANTENNA FOR GRAVITATIONAL-RADIATION
    KIMURA, S
    SUZUKI, T
    HIRAKAWA, H
    [J]. PHYSICS LETTERS A, 1981, 81 (05) : 302 - 304
  • [6] A Low-Frequency MEMS Magnetoelectric Antenna Based on Mechanical Resonance
    Wang, Yinan
    Ma, Zhibo
    Fu, Guanglei
    Wang, Jiayan
    Xi, Qi
    Wang, Yuanhang
    Jia, Ziqiang
    Zi, Guhao
    [J]. MICROMACHINES, 2022, 13 (06)
  • [7] Low-frequency voltage mode sensing of magnetoelectric sensor in package
    Li, F.
    Zhao, F.
    Zhang, Q. M.
    Datta, S.
    [J]. ELECTRONICS LETTERS, 2010, 46 (16) : 1132 - 1133
  • [8] A NEW LOW-FREQUENCY ANTENNA
    SEELEY, EW
    BURNS, JD
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1958, 46 (03): : 647 - 647
  • [9] A low-frequency resonant antenna
    Katsenelenbaum, BZ
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2003, 48 (05) : 511 - 512
  • [10] LOFAR: The low-frequency array
    Van Haarlem, M.P.
    Wise, M.W.
    Gunst, A.W.
    Heald, G.
    McKean, J.P.
    Hessels, J.W.T.
    De Bruyn, A.G.
    Nijboer, R.
    Swinbank, J.
    Fallows, R.
    Brentjens, M.
    Nelles, A.
    Beck, R.
    Falcke, H.
    Fender, R.
    Hörandel, J.
    Koopmans, L.V.E.
    Mann, G.
    Miley, G.
    Röttgering, H.
    Stappers, B.W.
    Wijers, R.A.M.J.
    Zaroubi, S.
    Van Den Akker, M.
    Alexov, A.
    Anderson, J.
    Anderson, K.
    Van Ardenne, A.
    Arts, M.
    Asgekar, A.
    Avruch, I.M.
    Batejat, F.
    Bähren, L.
    Bell, M.E.
    Bell, M.R.
    Van Bemmel, I.
    Bennema, P.
    Bentum, M.J.
    Bernardi, G.
    Best, P.
    Bîrzan, L.
    Bonafede, A.
    Boonstra, A.-J.
    Braun, R.
    Bregman, J.
    Breitling, F.
    Van De Brink, R.H.
    Broderick, J.
    Broekema, P.C.
    Brouw, W.N.
    [J]. Astronomy and Astrophysics, 2013, 556