Spiking Neural P Systems With Microglia

被引:1
|
作者
Zhao, Yuzhen [1 ]
Liu, Xiyu [1 ]
机构
[1] Shandong Normal Univ, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Neurons; Computational modeling; Maintenance; Biological system modeling; Stability analysis; Nervous system; Firing; Spiking neural P systems; MSNP systems; SNP systems; membrane computing; Turing universality; RULES; DESIGN; POWER;
D O I
10.1109/TPDS.2024.3399755
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spiking neural P systems (SNP systems), one of the parallel and distributed computing models with biological interpretability, have been a hot research topic in bio-inspired computational models in recent years. To improve the stability of the models, this study introduces microglia in the biological nervous system into SNP systems and proposes SNP systems with microglia (MSNP systems). In MSNP systems, besides neurons, another cell type named microglia is introduced. Microglia can help neurons in the range of action maintain homeostasis and prevent excitotoxicity, i.e., excessive excitability. Specifically, microglia use a new microglial maintenance rule to lower the number of spikes in neurons within their range of action when it is too high. The computational capability and efficiency of MSNP systems are also proved. This study makes SNP systems more stable and avoids data overflow or data explosion problems to some degree.
引用
收藏
页码:1239 / 1250
页数:12
相关论文
共 50 条
  • [1] Spiking neural P systems
    Ionescu, Mihai
    Paun, Gheorghe
    Yokomori, Takashi
    FUNDAMENTA INFORMATICAE, 2006, 71 (2-3) : 279 - 308
  • [2] On spiking neural P systems
    Oscar H. Ibarra
    Mario J. Pérez-Jiménez
    Takashi Yokomori
    Natural Computing, 2010, 9 : 475 - 491
  • [3] Spiking neural P systems
    Research Group on Mathematical Linguistics, Universitat Rovira i Virgili, Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
    不详
    不详
    不详
    Fundam Inf, 2006, 2-3 (279-308):
  • [4] On spiking neural P systems
    Ibarra, Oscar H.
    Perez-Jimenez, Mario J.
    Yokomori, Takashi
    NATURAL COMPUTING, 2010, 9 (02) : 475 - 491
  • [5] Spiking Neural P Systems with Thresholds
    Zeng, Xiangxiang
    Zhang, Xingyi
    Song, Tao
    Pan, Linqiang
    NEURAL COMPUTATION, 2014, 26 (07) : 1340 - 1361
  • [6] Spiking Neural P Systems with Astrocytes
    Pan, Linqiang
    Wang, Jun
    Hoogeboom, Hendrik Jan
    NEURAL COMPUTATION, 2012, 24 (03) : 805 - 825
  • [7] Extended spiking neural P systems
    Alhazov, Artiom
    Freund, Rudolf
    Oswald, Marion
    Slavkovik, Marija
    MEMBRANE COMPUTING, 2006, 4361 : 123 - +
  • [8] SPIKING NEURAL P SYSTEMS: A TUTORIAL
    Rozenberg, Grzegorz
    Paun, Gheorghe
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2007, (91): : 145 - 159
  • [9] Homogeneous Spiking Neural P Systems
    Zeng, Xiangxiang
    Zhang, Xingyi
    Pan, Linqiang
    FUNDAMENTA INFORMATICAE, 2009, 97 (1-2) : 275 - 294
  • [10] Spiking Neural P Systems With Enzymes
    Tian, Xiang
    Liu, Xiyu
    Ren, Qianqian
    Zhao, Yuzhen
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2022, 21 (04) : 575 - 587