Coercivity enhancement in hematite/permalloy heterostructures across the Morin transition

被引:1
|
作者
Wang, Tianxing D. [1 ,2 ]
Basaran, Ali C. [1 ]
El Hage, Ralph [1 ]
Li, Junjie [1 ,2 ]
Navarro, Henry [1 ]
Torres, Felipe E. [1 ,3 ]
Fuente, Oscar Rodriguez de la [4 ]
Schuller, Ivan K. [1 ]
机构
[1] Univ Calif San Diego, Ctr Adv Nanosci, Dept Phys, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[3] Univ Chile, Dept Phys, Santiago 7800024, Chile
[4] Univ Complutense Madrid, Dept Fis Mat, Madrid, Spain
关键词
Antiferromagnet; Morin transition; Coercivity Control; Hematite; Permalloy; Magnetic Thin Films; Interfacial Coupling; DEPENDENCE; SIZE;
D O I
10.1016/j.jmmm.2024.172024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interfacial effects between antiferromagnetic (AFM) and ferromagnetic (FM) materials have long been a center of magnetism studies. Aside from the exchange bias occurring at the AFM/FM interface, controlling the coercivity is another significant topic in magnetic recordings. The coercivity of FM materials is often determined through varying grain size, alloy composition, density of defects, etc., which is set during material growth and offers limited room for modification after growth. Hematite (alpha -Fe2O3) is an AFM material that undergoes a temperature-controlled spin-flip transition, the so-called Morin transition. This transition gives an extra degree of freedom making hematite an intriguing component to study the exchange coupling when interfaced with an FM material. In this work, changes in the magnetic properties of soft magnetic permalloy (Ni81Fe19,or Py) thin films grown on hematite were studied across the Morin transition. Surprisingly, these samples showed a remarkable change in coercivity during the Morin transition. We attribute this effect to the magnetic domain mixture of hematite during the Morin transition. Our findings present a novel method of controlling the coercivity of plain ferromagnetic thin films.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] DEFECTIVENESS OF HEMATITE STRUCTURE AND MORIN TRANSITION
    POVITSKII, VA
    SALUGIN, AN
    MAKAROV, EF
    FIZIKA TVERDOGO TELA, 1975, 17 (12): : 3649 - 3651
  • [2] MOSSBAUER INVESTIGATION OF MORIN TRANSITION IN HEMATITE
    RUSKOV, T
    TOMOV, T
    GEORGIEV, S
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1976, 37 (01): : 295 - 302
  • [3] EFFECT OF COBALT ON THE MORIN TRANSITION OF HEMATITE
    HE, T
    LUO, HL
    LI, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1988, 71 (03) : 323 - 328
  • [4] MORIN TRANSITION OF SHOCK-MODIFIED HEMATITE
    WILLIAMSON, DL
    VENTURINI, EL
    GRAHAM, RA
    MOROSIN, B
    PHYSICAL REVIEW B, 1986, 34 (03): : 1899 - 1907
  • [5] MAGNETIC DOMAINS IN HEMATITE AT AND ABOVE MORIN TRANSITION
    EATON, JA
    MORRISH, AH
    JOURNAL OF APPLIED PHYSICS, 1969, 40 (08) : 3180 - &
  • [6] THERMOELECTRIC-POWER OF HEMATITE AT THE MORIN TRANSITION
    PATAPIS, SK
    ALEXOPOULOS, K
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1984, 81 (01): : K57 - K61
  • [7] ON THE MORIN TRANSITION IN MN-SUBSTITUTED HEMATITE
    VANDENBERGHE, RE
    VERBEECK, AE
    DEGRAVE, E
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 : 898 - 900
  • [8] COBALT ABSORPTION EFFECT ON THE MORIN TRANSITION IN HEMATITE
    戴守愚
    黄锡成
    G.FILOTI
    ScienceBulletin, 1985, (09) : 1274 - 1275
  • [10] Thermal hysteresis of Morin transition in hematite particles
    Suber, L.
    Imperatori, P.
    Mari, A.
    Marchegiani, G.
    Mansilla, M. Vasquez
    Fiorani, D.
    Plunkett, W. R.
    Rinaldi, D.
    Cannas, C.
    Ennas, G.
    Peddis, D.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (26) : 6984 - 6989