CONVERGENCE OF SUBGRADIENT METHODS FOR PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

被引:0
|
作者
Zhao, Xiaopeng [1 ]
Ji, Huijuan [1 ]
Yao, Yonghong [1 ,2 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Kyung Hee Univ, Ctr Adv Informat Technol, Seoul 02447, South Korea
关键词
Pseudomonotone variational inequality; pseudomonotone equilibrium problem; subgradient method; projection; EXTRAGRADIENT METHOD; ALGORITHMS; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we inquire into iterative methods for solving pseudomonotone variational inequalities and pseudomonotone equilibrium problems in Hilbert spaces. We propose an iterative algorithm which combines subgradient method with linear search method for solving the investigated problems. We show that the sequence generated by the algorithm converges strongly to a common solution of the pseudomonotone variational inequality and the pseudomonotone equilibrium problem under some weaker conditions.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [1] Projection subgradient algorithms for solving pseudomonotone variational inequalities and pseudomonotone equilibrium problems
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 75 - 86
  • [2] PROJECTION SUBGRADIENT ALGORITHMS FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 75 - 86
  • [3] WEAK AND STRONG CONVERGENCE OF SUBGRADIENT EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Dang Van Hieu
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04): : 879 - 893
  • [4] Pseudomonotone Variational Inequalities: Convergence of Proximal Methods
    N. EL FAROUQ
    [J]. Journal of Optimization Theory and Applications, 2001, 109 : 311 - 326
  • [5] Pseudomonotone variational inequalities: Convergence of proximal methods
    El Farouq, N
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (02) : 311 - 326
  • [6] Modified Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Jiajia Cheng
    Hongwei Liu
    [J]. Journal of Harbin Institute of Technology(New series), 2022, 29 (04) : 41 - 48
  • [7] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 319 - 345
  • [8] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    [J]. Acta Applicandae Mathematicae, 2020, 170 : 319 - 345
  • [9] On modified subgradient extragradient methods for pseudomonotone variational inequality problems with applications
    Bing Tan
    Songxiao Li
    Xiaolong Qin
    [J]. Computational and Applied Mathematics, 2021, 40
  • [10] The subgradient extragradient method for pseudomonotone equilibrium problems
    Dadashi, Vahid
    Iyiola, Olaniyi S.
    Shehu, Yekini
    [J]. OPTIMIZATION, 2020, 69 (04) : 901 - 923