0.4-V Supply, 12-nW Reverse Bandgap Voltage Reference With Single BJT and Indirect Curvature Compensation

被引:0
|
作者
Lee, Chon-Fai [1 ,2 ,3 ]
U, Chi-Wa [1 ,2 ]
Martins, Rui P. [1 ,2 ,3 ]
Lam, Chi-Seng [1 ,2 ,3 ]
机构
[1] Univ Macau, State Key Lab Analog & Mixed Signal VLSI, Macau 999078, Peoples R China
[2] Univ Macau, Inst Microelect, Macau 999078, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Macau 999078, Peoples R China
关键词
Internet of Things; Generators; Power demand; Clocks; Oscillators; Charge pumps; Low voltage; Bandgap voltage reference; reverse bandgap; nonlinear current; leakage current; temperature coefficient; energy harvesting; TEMPERATURE-COEFFICIENT; REFERENCE CIRCUIT; 65-NM CMOS; 0.55-V; BGR;
D O I
10.1109/TCSI.2024.3425828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a 0.4-V supply, 12-nW reverse bandgap voltage reference (BGR) with single BJT and indirect curvature compensation. To achieve sub-0.5V operation, the proposed BGR employs the reverse BGR based complementary-to-absolute-temperature (CTAT) voltage generator, which does not suffer from the settling error and thus reducing the biasing current for the BJT. The reduction in BJT biasing current can reduce the power consumption, thus relieving the burden on the 2 x charge pump as well, in which the minimum supply voltage of the proposed BGR decreases down to 0.4 V. In this paper, we employ a differential pair proportional-to-absolute-temperature (PTAT) voltage generator to provide a sufficiently large PTAT voltage. To suppress the temperature coefficient (TC) under limited power and voltage budgets, we propose using a nA level PTAT plus nonlinear current to bias both the BJT and PTAT voltage generator. This approach provides an indirect voltage curvature compensation. The proposed reverse BGR fabricated in 65 nm CMOS, occupies an active area of 0.0470 mm (2) . Measurement results from 8 chips show an average reference voltage of 487.4 mV under 0.4 V supply, with an average TC of 28.4 ppm/ degrees C over a temperature range from - 40 degrees C to 100 degrees C, while consuming only 12 nW power.
引用
收藏
页码:5040 / 5053
页数:14
相关论文
共 20 条
  • [1] An 1 V Supply, 740 nW, 8.7 ppm/°C Bandgap Voltage Reference With Segmented Curvature Compensation
    Chi-Wa, U.
    Liu, Cong
    Martins, Rui P.
    Lam, Chi-Seng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (12) : 4755 - 4766
  • [2] A WIDE SUPPLY RANGE BANDGAP VOLTAGE REFERENCE WITH CURVATURE COMPENSATION
    Shi, L. F.
    Ma, X.
    Qin, G. H.
    Cheng, L. Y.
    Lai, X. Q.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2013, 22 (01)
  • [3] Resistorless BJT bias and curvature compensation circuit at 3.4 nW for CMOS bandgap voltage references
    Mattia, O. E.
    Klimach, H.
    Bampi, S.
    ELECTRONICS LETTERS, 2014, 50 (12) : 863 - +
  • [4] A 134-nW Single BJT Bandgap Voltage and Current Reference in 0.18-µm CMOS
    Hamed Aminzadeh
    Dalton Martini Colombo
    Mohammad Mahdi Valinezhad
    Circuits, Systems, and Signal Processing, 2023, 42 : 1293 - 1311
  • [5] A 134-nW Single BJT Bandgap Voltage and Current Reference in 0.18-μm CMOS
    Aminzadeh, Hamed
    Colombo, Dalton Martini
    Valinezhad, Mohammad Mahdi
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 42 (3) : 1293 - 1311
  • [6] A 0.45V, 1.3 nW Bandgap CMOS Voltage Reference with Temperature Compensation
    Solanki, Milan
    Khatri, Rajesh
    2017 4TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ELECTRONICS (UPCON), 2017, : 234 - 238
  • [7] A 0.9-V 33.7-ppm/°C 85-nW Sub-Bandgap Voltage Reference Consisting of Subthreshold MOSFETs and Single BJT
    Wang, Lidan
    Zhan, Chenchang
    Tang, Junyao
    Liu, Yang
    Li, Guofeng
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (10) : 2190 - 2194
  • [8] 0.7 V Supply, 8 nW, 8 ppm/°C Resistorless Sub-Bandgap Voltage Reference
    Mattia, Oscar E.
    Klimach, Hamilton
    Bampi, Sergio
    2014 IEEE 57TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2014, : 479 - 482
  • [9] 0.75 V supply nanowatt resistorless sub-bandgap curvature-compensated CMOS voltage reference
    Gomez Caicedo, Jhon Alexander
    Mattia, Oscar E.
    Klimach, Hamilton
    Bampi, Sergio
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2016, 88 (02) : 333 - 345
  • [10] 0.75 V supply nanowatt resistorless sub-bandgap curvature-compensated CMOS voltage reference
    Jhon Alexander Gomez Caicedo
    Oscar E. Mattia
    Hamilton Klimach
    Sergio Bampi
    Analog Integrated Circuits and Signal Processing, 2016, 88 : 333 - 345