On the Vulnerability of Backdoor Defenses for Federated Learning

被引:0
|
作者
Fang, Pei [1 ]
Chen, Jinghui [2 ]
机构
[1] Tongji Univ, Shanghai, Peoples R China
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Learning (FL) is a popular distributed machine learning paradigm that enables jointly training a global model without sharing clients' data. However, its repetitive serverclient communication gives room for backdoor attacks with aim to mislead the global model into a targeted misprediction when a specific trigger pattern is presented. In response to such backdoor threats on federated learning, various defense measures have been proposed. In this paper, we study whether the current defense mechanisms truly neutralize the backdoor threats from federated learning in a practical setting by proposing a new federated backdoor attack method for possible countermeasures. Different from traditional training (on triggered data) and rescaling (the malicious client model) based backdoor injection, the proposed backdoor attack framework (1) directly modifies (a small proportion of) local model weights to inject the backdoor trigger via sign flips; (2) jointly optimize the trigger pattern with the client model, thus is more persistent and stealthy for circumventing existing defenses. In a case study, we examine the strength and weaknesses of recent federated backdoor defenses from three major categories and provide suggestions to the practitioners when training federated models in practice.
引用
收藏
页码:11800 / 11808
页数:9
相关论文
共 50 条
  • [1] An Investigation of Recent Backdoor Attacks and Defenses in Federated Learning
    Chen, Qiuxian
    Tao, Yizheng
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 262 - 269
  • [2] Backdoor attacks and defenses in federated learning: Survey, challenges and future research directions
    Nguyen, Thuy Dung
    Nguyen, Tuan
    Nguyen, Phi Le
    Pham, Hieu H.
    Doan, Khoa D.
    Wong, Kok-Seng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [3] Breaking Distributed Backdoor Defenses for Federated Learning in Non-IID Settings
    Yang, Jijia
    Shu, Jiangang
    Jia, Xiaohua
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 347 - 354
  • [4] Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions
    Gong, Xueluan
    Chen, Yanjiao
    Wang, Qian
    Kong, Weihan
    IEEE WIRELESS COMMUNICATIONS, 2023, 30 (02) : 114 - 121
  • [5] How To Backdoor Federated Learning
    Bagdasaryan, Eugene
    Veit, Andreas
    Hua, Yiqing
    Estrin, Deborah
    Shmatikov, Vitaly
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2938 - 2947
  • [6] Unlearning Backdoor Attacks in Federated Learning
    Wu, Chen
    Zhu, Sencun
    Mitra, Prasenjit
    Wang, Wei
    2024 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS 2024, 2024,
  • [7] Sniper Backdoor: Single Client Targeted Backdoor Attack in Federated Learning
    Abad, Gorka
    Paguada, Servio
    Ersoy, Oguzhan
    Picek, Stjepan
    Ramirez-Duran, Victor Julio
    Urbieta, Aitor
    2023 IEEE CONFERENCE ON SECURE AND TRUSTWORTHY MACHINE LEARNING, SATML, 2023, : 377 - 391
  • [8] Backdoor Federated Learning by Poisoning Key Parameters
    Song, Xuan
    Li, Huibin
    Hu, Kailang
    Zai, Guangjun
    ELECTRONICS, 2025, 14 (01):
  • [9] Optimally Mitigating Backdoor Attacks in Federated Learning
    Walter, Kane
    Mohammady, Meisam
    Nepal, Surya
    Kanhere, Salil S.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2949 - 2963
  • [10] BayBFed: Bayesian Backdoor Defense for Federated Learning
    Kumari, Kavita
    Rieger, Phillip
    Fereidooni, Hossein
    Jadliwala, Murtuza
    Sadeghi, Ahmad-Reza
    2023 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2023, : 737 - 754