Crime data visualization plays a key role in understanding and dealing with criminal activities. This paper focuses on the integration of mixed reality (MR) and crime data analysis. There aremany barriers and challengeswhen developing MR three-dimensional (3D) environments for visualization and inspection. The main problem is the lack of commonly shared data structures and interfaces between them. The rise in crime rates over the past few years is a huge source of issue for police departments and law enforcement organizations. As the crime rates significantly changed throughout time, both upward and downward, these changes are then compared to external factors, such as population, unemployment, and poverty. There is a need for visualizing the multiple crime datasets in multiple states with external factors. This work proposes a novel interactive approach for loading crime datasets into the HoloLens 2 device and displaying them in a mixed-reality setting for data analysis. By allowing people to engage and analyze datasets in a 3D space, the suggested system seeks to close the gap between data analysis and machine learning. Users can import many datasets, such as spatial, category, and numerical data, into the HoloLens 2 device and interactively visualize crime data for different states simultaneously. The system offers user-friendly capabilities for interactive data visualization in mixed reality once the data has been imported. The dataset is manipulated and transformed by users, who can also rotate, scale, and position it in 3D. To depict various characteristics and dimensions of the data, the system also supports a variety of visual encoding techniques, such as color mapping, size scaling, and spatial layout with the use of the imported datasets and the HoloLens 2's visualization capabilities, users can discover new insights and intricate linkages within the data. Natural movements and voice instructions allowusers to engage with the visible data, enabling a hands-free and immersive data exploration experience. This paper also visualizes the crime data for four different cities: Chicago, Baltimore, Dallas, and Denton. Analyzing crime against factors such as population, employment, unemployment rate, and poverty rates provides information about the complex relationship between social factors and criminal behavior. The results and outcomes of this work will help the police department and law enforcement organizations better understand crime issues and supply insight into factors affecting crime that will help them deploy resources and help their decision-making process.