Numerical investigation of diesel spray combustion characteristics in the ammonia/air atmosphere

被引:2
|
作者
Wang, Xiaochen [1 ]
Bu, Han [1 ]
Chen, Hao [1 ]
Liu, Jinlong [2 ]
Chen, Zhenbin [3 ]
Gao, Jianbing [4 ]
机构
[1] Changan Univ, Sch Energy & Elect Engn, Shaanxi Key Lab New Transportat Energy & Automot E, Xian 710064, Peoples R China
[2] Zhejiang Univ, Power Machinery & Vehicular Engn Inst, Hangzhou 310027, Peoples R China
[3] Hainan Univ, Coll Mech & Elect Engn, Haikou 570228, Peoples R China
[4] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical simulation; Diesel spray; Ammonia/air environment; Combustion characteristics; Boundary conditions; N-HEPTANE; TEMPERATURE; EMISSIONS; FLAME;
D O I
10.1016/j.joei.2024.101718
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ammonia/diesel dual-fuel combustion mode is a promising strategy for decarbonizing internal combustion engines. However, the impact of a premixed ammonia/air atmosphere on diesel spray combustion characteristics is not fully understood. This study analyzes the effects of premixed ammonia/air atmosphere, including premixed equivalence ratio, the cooling effect of liquid ammonia vaporization, and ambient oxygen concentration on the ignition and combustion characteristics and soot yield potential of diesel spray. Numerical simulations using nheptane as a single-component diesel surrogate reveal that increasing the premixed ammonia equivalence ratio and lowering ambient oxygen concentration extend the ignition delay times and flame lift-off length of n-heptane spray. Liquid ammonia vaporization further prolongs the ignition delay by lowering the ambient temperature during n-heptane auto-ignition. Moreover, there is a trade-off between ignition delay and soot yield potential as longer ignition delays allow more thorough mixing of diesel and premixed gas, reducing soot formation. Given the substantial extension of ignition delay in ammonia/air atmospheres, it is recommended that ammonia/diesel dual-fuel engines operate with higher charged gas temperatures to ensure stable and repeatable ignition events. The negative effects of increased soot yield could be mitigated by using ammonia to reduce soot precursors. Overall, these results underline the need for further fundamental studies on ammonia/diesel co-combustion to facilitate the commercial adoption of ammonia/diesel dual-fuel engines.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spectroscopic investigation of diesel-piloted ammonia spray combustion
    Scharl, Valentin
    Sattelmayer, Thomas
    FUEL, 2024, 358
  • [2] Numerical investigation of the effect of nozzle hole diameter on the combustion, emission, and spray characteristics in a diesel engine
    Singh, Vaibhav
    Kumar, Naveen
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [3] Numerical Investigation of Combustion and Emission Characteristics of the Single-Cylinder Diesel Engine Fueled with Diesel-Ammonia Mixture
    Ali
    Lim, Ocktaeck
    Energies, 2024, 17 (22)
  • [4] An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber
    Chen, Zhanming
    He, Haibin
    Wu, Jie
    Wang, Lei
    Lou, Hua
    Zhao, Pengyun
    Wang, Tao
    Zhang, Haitao
    Chen, Hao
    ENERGY, 2024, 293
  • [5] Numerical Investigation of Combustion and Exhaust Emissions Characteristics Based on Experimental Spray and Atomization Characteristics in a Compression Ignition Diesel Engine
    Park, Su Han
    Kim, Hyung Jun
    Lee, Chang Sik
    ENERGY & FUELS, 2010, 24 (04) : 2429 - 2438
  • [6] Investigation of the spray combustion characteristics of biodiesel (rapeseed methyl ester) and diesel
    Qi W.
    Ming P.
    Zhang W.
    Zhao H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2019, 40 (08): : 1468 - 1473
  • [7] Experimental investigation and comparison of spray and combustion characteristics of GTL and diesel fuels
    Kim, K. S.
    Beschieru, V.
    Jeong, D. S.
    Lee, Y.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2007, 8 (03) : 275 - 281
  • [8] Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner
    Somarathne, Kapuruge Don Kunkuma Amila
    Hayakawa, Akihiro
    Kobayashi, Hideaki
    JOURNAL OF FLUID SCIENCE AND TECHNOLOGY, 2016, 11 (04):
  • [10] COMBUSTION CHARACTERISTICS OF DIESEL FUEL SPRAY IN THE HIGH PRESSURE AND HIGH TEMPERATURE ATMOSPHERE.
    Konishi, Katsuyuki
    Sato, Jun-ichi
    Okada, Hiroshi
    IHI Engineering Review (English Edition), 1986, 19 (01): : 19 - 23