Renormalized volume and non-degeneracy of conformally compact Einstein four-manifolds

被引:0
|
作者
Gursky, Matthew J. [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
Conformally compact manifolds; Einstein metrics; Linearized Einstein equations; BOUNDARY-REGULARITY; METRICS; MANIFOLDS;
D O I
10.1016/j.geomphys.2024.105226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we give a condition, depending on the renormalized volume of a fourdimensional Poincar & eacute; -Einstein manifold, which implies that the TT-gauge-fixed linearised Einstein operator is non-degenerate. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Non-degeneracy of Poincaré–Einstein Four-Manifolds Satisfying a Chiral Curvature Inequality
    Joel Fine
    [J]. The Journal of Geometric Analysis, 2023, 33
  • [2] Non-degeneracy of Poincare-Einstein Four-Manifolds Satisfying a Chiral Curvature Inequality
    Fine, Joel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [3] On the renormalized volumes for conformally compact Einstein manifolds
    Yang P.
    Chang S.-Yu.A.
    Qing J.
    [J]. Journal of Mathematical Sciences, 2008, 149 (6) : 1755 - 1769
  • [4] Twistors in conformally flat Einstein four-manifolds
    Esposito, G
    Pollifrone, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1996, 5 (05): : 481 - 493
  • [5] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 73 - 86
  • [6] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (03): : 73 - 86
  • [7] On Einstein four-manifolds
    de Araujo Costa, É
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (02) : 244 - 255
  • [8] EXAMPLES OF COMPACT EINSTEIN FOUR-MANIFOLDS WITH NEGATIVE CURVATURE
    Fine, Joel
    Premoselli, Bruno
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 33 (04) : 991 - 1038
  • [9] On conformally compact Einstein manifolds
    Wang, XD
    [J]. MATHEMATICAL RESEARCH LETTERS, 2001, 8 (5-6) : 671 - 688
  • [10] ON CONFORMALLY COMPACT EINSTEIN MANIFOLDS
    Chang, Sun-Yung A.
    Ge, Yuxin
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 199 - 213