共 7 条
- [1] ATTITUDE CONTROL AND ORBIT DETERMINATION OF A CREWED SPACECRAFT WITH LUNAR LANDER IN NEAR RECTILINEAR HALO ORBIT SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV, 2019, 168 : 1651 - 1669
- [2] A FOCUS ON NAVIGATION PERFORMANCE NEAR PERILUNE IN A NEAR RECTILINEAR HALO ORBIT FOR A CREWED STATION PROCEEDINGS OF THE 44TH ANNUAL AMERICAN ASTRONAUTICAL SOCIETY GUIDANCE, NAVIGATION, AND CONTROL CONFERENCE, AAS 2022, 2024, : 555 - 567
- [3] EVALUATING LUNAR DESCENT AND LANDING PERFORMANCE FROM A NEAR RECTILINEAR HALO ORBIT USING LINEAR COVARIANCE RESETTING TECHNIQUES PROCEEDINGS OF THE 44TH ANNUAL AMERICAN ASTRONAUTICAL SOCIETY GUIDANCE, NAVIGATION, AND CONTROL CONFERENCE, AAS 2022, 2024, : 963 - 989
- [5] LUNAR LANDING AND SAMPLE RETURN FROM NEAR RECTILINEAR HALO ORBIT USING HIGH-POWERED SOLAR ELECTRIC PROPULSION GUIDANCE, NAVIGATION, AND CONTROL 2019, 2019, 169 : 487 - 497
- [7] The use of vertical instability of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} planar Lyapunov orbits for transfers from near rectilinear halo orbits to planar distant retrograde orbits in the Earth–Moon system Celestial Mechanics and Dynamical Astronomy, 2019, 131 (3)