Spectral gaps of two- and three-dimensional many-body quantum systems in the limit

被引:2
|
作者
Lukin, Illya, V [1 ,2 ]
Sotnikov, Andrii G. [1 ,2 ]
Leamer, Jacob M. [3 ,4 ]
Magann, Alicia B. [4 ]
Bondar, Denys I. [3 ]
机构
[1] Kharkov Natl Univ, Svobody Sq 4, UA-61022 Kharkiv, Ukraine
[2] NSC KIPT, Akhiezer Inst Theoret Phys, Akademichna 1, UA-61108 Kharkiv, Ukraine
[3] Tulane Univ, Dept Phys & Engn Phys, 6823 St Charles Ave, New Orleans, LA 70118 USA
[4] Sandia Natl Labs, Ctr Comp Res, Albuquerque, NM 87185 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
基金
美国国家科学基金会;
关键词
TEMPERATURE SERIES EXPANSIONS; MATRIX RENORMALIZATION-GROUP; STATES;
D O I
10.1103/PhysRevResearch.6.023128
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an expression for the spectral gap, opening up new possibilities for performing and accelerating spectral calculations of quantum many -body systems. We develop and demonstrate one such possibility in the context of tensor network simulations. Our approach requires only minor modifications of the widely used simple update method and is computationally lightweight relative to other approaches. We validate it by computing spectral gaps of the 2D and 3D transverse -field Ising models and find strong agreement with previously reported perturbation theory results.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Three-dimensional representation of the many-body quantum state
    Holland, Peter
    JOURNAL OF MOLECULAR MODELING, 2018, 24 (09)
  • [2] Three-dimensional representation of the many-body quantum state
    Peter Holland
    Journal of Molecular Modeling, 2018, 24
  • [3] Rotating frames and gauge invariance in three-dimensional many-body quantum systems
    Bouzas, AO
    Gamboa, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6773 - 6805
  • [4] Quantum refractive index for two- and three-dimensional systems
    Schmidt, Alexandre G. M.
    Pereira, Matheus E.
    ANNALS OF PHYSICS, 2023, 452
  • [5] Shareability of quantum correlations in a many-body spin system with two- and three-body interactions
    Kiran, P.
    Reji, Harsha Miriam
    Hegde, Hemant S.
    Prabhu, R.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [6] Quasibound states in two- and three-dimensional open quantum systems
    Barr, Alex M.
    Reichl, L. E.
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [7] TWO-, THREE-, MANY-BODY SYSTEMS INVOLVING MESONS. MULTIMESON CONDENSATES
    Oset, E.
    Bayar, M.
    Dote, A.
    Hyodo, T.
    Khemchandani, K. P.
    Liang, W. H.
    Martinez Torres, A.
    Oka, M.
    Roca, L.
    Uchino, T.
    Xiao, C. W.
    ACTA PHYSICA POLONICA B, 2016, 47 (02): : 357 - 365
  • [8] Three-dimensional visualization of many-body system dynamics
    Bernaschi, M., 1600, (35): : 1 - 2
  • [9] Chaotic properties of quantum many-body systems in the thermodynamic limit
    JonaLasinio, G
    Presilla, C
    PHYSICAL REVIEW LETTERS, 1996, 77 (21) : 4322 - 4325
  • [10] Probing spectral features of quantum many-body systems with quantum simulators
    Sun, Jinzhao
    Vilchez-Estevez, Lucia
    Vedral, Vlatko
    Boothroyd, Andrew T.
    Kim, M. S.
    NATURE COMMUNICATIONS, 2025, 16 (01)