Unveiling the high-temperature degradation mechanism of solid oxide electrolysis cells through direct imaging of nanoscale interfacial phenomena

被引:4
|
作者
Choi, Haneul [1 ,2 ]
Shin, Jisu [1 ]
Yeon, Changho [3 ,4 ]
Park, Sun-Young [5 ]
Bae, Shin-Tae [6 ]
Kim, Ji Wan [6 ]
Lee, Jong-Ho [1 ,7 ]
Park, Jin-Woo [2 ]
Lee, Chan-Woo [3 ]
Yoon, Kyung Joong [1 ]
Chang, Hye Jung [1 ,7 ]
机构
[1] Korea Inst Sci & Technol, Ctr Energy Mat Res, Seoul 02792, South Korea
[2] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[3] Korea Inst Energy Res, Energy AI & Computat Sci Lab, Daejeon 34129, South Korea
[4] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[5] Korea Inst Sci & Technol, Technol Convergence Ctr, Seoul, South Korea
[6] Hyundai Motor Co, Res & Dev Div, Green Energy Mat Res Team, Uiwang Si 16082, South Korea
[7] Univ Sci & Technol, KIST Sch, Div Nano Convergence, Seoul 02792, South Korea
关键词
YTTRIA-STABILIZED ZIRCONIA; HYDROGEN-PRODUCTION; OXYGEN ELECTRODES; IONIC-CONDUCTIVITY; CRYSTAL-STRUCTURE; AIR ELECTRODE; ENERGY; RADIATION; NONSTOICHIOMETRY; DELAMINATION;
D O I
10.1039/d4ee00896k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid oxide electrolysis cell (SOEC) technology potentially offers the most efficient means of clean H2 production. Currently, the most critical issue is the delamination of the air electrode, but its fundamental cause has long been elusive. Using cutting-edge transmission electron microscopy techniques and density functional theory calculations, we reveal nanometer-scale interfacial degradation phenomena occurring in the early stages, clarifying the entire process of delamination and the origin thereof. During SOEC operation, oxygen ions accumulate at specific locations where they cannot be released as a gas. The annihilation of oxygen vacancies modifies the unit cell structure, causing anisotropic lattice strain; further injection of excess oxygen ions creates dislocations and segmented subgrains. Subsequently, these ions initiate the formation of nanopores, which eventually develop into cracks and delaminate the electrode. These previously undiscovered structural alterations contradict the long-held but unsubstantiated notion of gas pressure build-up, providing novel guidance for future development. Advanced transmission electron microscopy analysis uncovers the fundamental mechanisms behind nanometer-scale interfacial degradation phenomena in high-temperature solid oxide electrolysis cells.
引用
收藏
页码:5410 / 5420
页数:12
相关论文
共 50 条
  • [1] High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells
    Zheng, Yifeng
    Zhou, Juan
    Zhang, Lan
    Liu, Qinglin
    Pan, Zehua
    Chan, Siew Hwa
    ELECTROCHIMICA ACTA, 2018, 280 : 206 - 215
  • [2] Hydrogen production through high-temperature electrolysis in a solid oxide cell
    Herring, JS
    Lessing, P
    O'Brien, JE
    Stoots, C
    Hartvigsen, J
    Elangovan, S
    NUCLEAR PRODUCTION OF HYDROGEN, 2004, : 183 - 200
  • [3] Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis
    Sohal, M. S.
    O'Brien, J. E.
    Stoots, C. M.
    Sharma, V. I.
    Yildiz, B.
    Virkar, A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (01):
  • [4] DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
    Sohal, M. S.
    O'Brien, J. E.
    Stoots, C. M.
    Sharma, V. I.
    Yildiz, B.
    Virkar, A.
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1, 2010, : 377 - 387
  • [5] Stable solid oxide electrolysis cells with SSF-based symmetrical electrode for direct high-temperature steam electrolysis
    Ling, Yihan
    Wu, Yujie
    Tian, Yunfeng
    Wang, Xinxin
    Shen, Shuanglin
    Ou, Xuemei
    Wang, Shaorong
    CERAMICS INTERNATIONAL, 2022, 48 (01) : 981 - 991
  • [6] High-temperature electrocatalysis and key materials in solid oxide electrolysis cells
    Lingting Ye
    Kui Xie
    Journal of Energy Chemistry, 2021, 54 (03) : 736 - 745
  • [7] High-temperature electrocatalysis and key materials in solid oxide electrolysis cells
    Ye, Lingting
    Xie, Kui
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 736 - 745
  • [8] High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells
    Lim, Chee Kuan
    Liu, Qinglin
    Zhou, Juan
    Sun, Qiang
    Chan, Siew Hwa
    JOURNAL OF POWER SOURCES, 2017, 342 : 79 - 87
  • [9] Effect of the operating temperature on the degradation of solid oxide electrolysis cells
    Sassone, Giuseppe
    Celikbilek, Ozden
    Hubert, Maxime
    Develos-Bagarinao, Katherine
    David, Thomas
    Guetaz, Laure
    Martin, Isabelle
    Villanova, Julie
    Benayad, Anass
    Rorato, Lea
    Vulliet, Julien
    Morel, Bertrand
    Leon, Aline
    Laurencin, Jerome
    JOURNAL OF POWER SOURCES, 2024, 605
  • [10] High-temperature CO2 electrolysis in solid oxide electrolysis cells cathode: Advances and perspective
    Luo, Yao
    Liu, Tong
    Wang, Yao
    Ding, Mingyue
    CHEM CATALYSIS, 2023, 3 (12):