Advances in computational quantitative nephropathology

被引:0
|
作者
Buelow, Roman D. [1 ]
Droste, Patrick [1 ,2 ]
Boor, Peter [1 ,2 ]
机构
[1] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Pauwelsstr 30, D-52074 Aachen, Germany
[2] Univ Klinikum RWTH Aachen, Med Klin II, Aachen, Germany
来源
PATHOLOGIE | 2024年 / 45卷 / 02期
基金
欧洲研究理事会;
关键词
Kidney; Neural networks; computer; References standards; Prognosis; Prospective studies;
D O I
10.1007/s00292-024-01300-1
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background Semiquantitative histological scoring systems are frequently used in nephropathology. In computational nephropathology, the focus is on generating quantitative data from histology (so-called pathomics). Several recent studies have collected such data using next-generation morphometry (NGM) based on segmentations by artificial neural networks and investigated their usability for various clinical or diagnostic purposes. Aim To present an overview of the current state of studies regarding renal pathomics and to identify current challenges and potential solutions. Materials and methods Due to the literature restriction (maximum of 30 references), studies were selected based on a database search that processed as much data as possible, used innovative methodologies, and/or were ideally multicentric in design. Results and discussion Pathomics studies in the kidney have impressively demonstrated that morphometric data are useful clinically (for example, for prognosis assessment) and translationally. Further development of NGM requires overcoming some challenges, including better standardization and generation of prospective evidence.
引用
收藏
页码:140 / 145
页数:6
相关论文
共 50 条
  • [1] Fortschritte in der computergestützten quantitativen NephropathologieAdvances in computational quantitative nephropathology
    Roman D. Bülow
    Patrick Droste
    Peter Boor
    Die Pathologie, 2024, 45 (2) : 140 - 145
  • [2] Digital pathology and computational image analysis in nephropathology
    Barisoni, Laura
    Lafata, Kyle J.
    Hewitt, Stephen M.
    Madabhushi, Anant
    Balis, Ulysses G. J.
    NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) : 669 - 685
  • [3] Digital pathology and computational image analysis in nephropathology
    Laura Barisoni
    Kyle J. Lafata
    Stephen M. Hewitt
    Anant Madabhushi
    Ulysses G. J. Balis
    Nature Reviews Nephrology, 2020, 16 : 669 - 685
  • [4] Toward Real-World Computational Nephropathology
    Calumby, Rodrigo T.
    Duarte, Angelo A.
    Angelo, Michele F.
    Santos, Emanuele
    Sarder, Pinaki
    dos-Santos, Washington L. C.
    Oliveira, Luciano R.
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2023, 18 (06): : 809 - 812
  • [5] Analysis of the PICASO Ensemble Operator in Computational Nephropathology
    Maturana, Ana Gabriela Banquez
    KIDNEY360, 2025, 6 (03): : 346 - 347
  • [6] Nephropathology
    Wolf, Gunter
    Amann, Kerstin
    NEPHROLOGIE, 2022, 17 (06): : 357 - 358
  • [7] Digital pathology imaging as a novel platform for standardization and globalization of quantitative nephropathology
    Barisoni, Laura
    Gimpel, Charlotte
    Kain, Renate
    Laurinavicius, Arvydas
    Bueno, Gloria
    Zeng, Caihong
    Liu, Zhihong
    Schaefer, Franz
    Kretzler, Matthias
    Holzman, Lawrence B.
    Hewitt, Stephen M.
    CLINICAL KIDNEY JOURNAL, 2017, 10 (02) : 176 - 187
  • [8] Permutation-Invariant Cascaded Attentional Set Operator for Computational Nephropathology
    Zare, Samira
    Vo, Huy Q.
    Altini, Nicola
    Bevilacqua, Vitoantonio
    Rossini, Michele
    Pesce, Francesco
    Gesualdo, Loreto
    Turkevi-Nagy, Sandor
    Becker, Jan Ulrich
    Mohan, Chandra
    Van Nguyen, Hien
    KIDNEY360, 2025, 6 (03): : 441 - 450
  • [9] Overview of computational advances in Quantitative Phase Imaging using Digital Holographic Microscopy
    Doblas, A.
    Bogue-Jimenez, B.
    Obando-Vasquez, S.
    Castaneda, R.
    Trujillo, C.
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2024, 2024, 13041