Regulating Interfacial Compositions to Build a Stable Superlattice Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries

被引:4
|
作者
Fang, De [1 ]
Li, Jianling [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 10期
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; layered oxides; interfaceregulation; stable superlattice; anionic redox;
D O I
10.1021/acsaem.4c00949
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The introduction of a superlattice structure in layered oxides for sodium-ion batteries (SIBs) is an effective strategy for improving structural stability. However, carbonate impurities adhering to the surface of layered oxides increase the side reactions and block the Na+ transport channels. The deteriorating interfacial environment leads to the gradual disappearance of the superlattice structure during cycling, which affects the structural stability of SIBs. Herein, a stable superlattice structure is successfully achieved by reasonable interfacial regulation to remove carbonate impurities adhering to the surface of P2-Na0.80Li0.13Ni0.20Mn0.67O2. The residual impurities, such as Na2CO3 and NaHCO3, on the surface of the layered oxides react with Si4+ to generate about 5 nm of a Na2SiO3 coating layer, which can improve the air stability of the cathode materials. Meanwhile, the introduction of Si into the bulk phase significantly enhances the length of the c-axis, resulting in faster Na+ diffusion kinetics. The cyclic voltammetry (CV) and ex situ X-ray photoelectron spectroscopy (XPS) results show that the reversible redox of the lattice oxygen is activated by interfacial regulation. Thus, LNM-2% NSO exhibits a high reversible specific capacity (170.95 mA<middle dot>h<middle dot>g(-1) at 0.05C), good capacity retention (88.6% after 100 cycles at 0.5C), and excellent rate performance (96.12 mA<middle dot>h<middle dot>g(-1) at 5C) in a wide voltage range of 1.5-4.5 V. This study confirms the feasibility of regulating the interfacial composition to achieve a stable superlattice structure, which has implications for the design of cathode materials with excellent air stability.
引用
收藏
页码:4639 / 4649
页数:11
相关论文
共 50 条
  • [1] A Superlattice-Stabilized Layered Oxide Cathode for Sodium-Ion Batteries
    Li, Qi
    Xu, Sheng
    Guo, Shaohua
    Jiang, Kezhu
    Li, Xiang
    Jia, Min
    Wang, Peng
    Zhou, Haoshen
    ADVANCED MATERIALS, 2020, 32 (23)
  • [2] Interfacial engineering of the layered oxide cathode materials for sodium-ion battery
    Zhao, Quanqing
    Wang, Ruru
    Gao, Ming
    Butt, Faheem K.
    Jia, Jianfeng
    Wu, Haishun
    Zhu, Youqi
    NANO RESEARCH, 2024, 17 (03) : 1441 - 1464
  • [3] Interfacial engineering of the layered oxide cathode materials for sodium-ion battery
    Quanqing Zhao
    Ruru Wang
    Ming Gao
    Faheem K. Butt
    Jianfeng Jia
    Haishun Wu
    Youqi Zhu
    Nano Research, 2024, 17 : 1441 - 1464
  • [4] Research Progress on Ordering Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Gan L.
    Yao H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (01): : 148 - 157
  • [5] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Jinpin Wu
    Junhang Tian
    Xueyi Sun
    Weidong Zhuang
    International Journal of Minerals,Metallurgy and Materials, 2024, (07) : 1720 - 1744
  • [6] Recent progress on layered oxide cathode materials for sodium-ion batteries
    Jian X.-Y.
    Jin J.-T.
    Wang Y.
    Shen Q.-Y.
    Liu Y.-C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 601 - 611
  • [7] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Wu, Jinpin
    Tian, Junhang
    Sun, Xueyi
    Zhuang, Weidong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (07) : 1720 - 1744
  • [8] Layered Oxide Cathode Materials for Sodium-Ion Batteries: A Mini-Review
    Gao, Liang
    Wang, Kai-Xue
    ENERGY & FUELS, 2024, 38 (19) : 18227 - 18241
  • [9] Structure-property relationship in layered cathode materials for sodium-ion batteries
    Lee, Eungje
    Gutierrez, Arturo
    Slater, Michael
    Lu, Jun
    Kim, Youngsik
    Johnson, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [10] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    ADVANCED MATERIALS, 2024,