Cross-domain Recommendation via Dual Adversarial Adaptation

被引:2
|
作者
Su, Hongzu [1 ]
Li, Jingjing [1 ]
Du, Zhekai [1 ]
Zhu, Lei [2 ]
Lu, Ke [1 ]
Shen, Heng Tao [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Tongji Univ, Sch Elect & Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial domain adaptation; cross-domain recommendation;
D O I
10.1145/3632524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Cross-domain Recommendation via Adversarial Adaptation
    Su, Hongzu
    Zhang, Yifei
    Yang, Xuejiao
    Hua, Hua
    Wang, Shuangyang
    Li, Jingjing
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1808 - 1817
  • [2] A Deep Dual Adversarial Network for Cross-Domain Recommendation
    Zhang, Qian
    Liao, Wenhui
    Zhang, Guangquan
    Yuan, Bo
    Lu, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3266 - 3278
  • [3] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589
  • [4] Cross-Domain Requirements Linking via Adversarial-based Domain Adaptation
    Chang, Zhiyuan
    Li, Mingyang
    Wang, Qing
    Li, Shoubin
    Wang, Junjie
    [J]. 2023 IEEE/ACM 45TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE, 2023, : 1596 - 1608
  • [5] Cross-domain Semantic Feature Learning via Adversarial Adaptation Networks
    Li, Rui
    Cao, Wenming
    Qian, Sheng
    Wong, Hau-San
    Wu, Si
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 37 - 42
  • [6] Cross-Domain Human Parsing via Adversarial Feature and Label Adaptation
    Liu, Si
    Sun, Yao
    Zhu, Defa
    Ren, Guanghui
    Chen, Yu
    Feng, Jiashi
    Han, Jizhong
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7146 - 7153
  • [7] Adaptive Adversarial Contrastive Learning for Cross-Domain Recommendation
    Hsu, Chi-Wei
    Chen, Chiao-Ting
    Huang, Szu-Hao
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (03)
  • [8] DARec: Deep Domain Adaptation for Cross-Domain Recommendation via Transferring Rating Patterns
    Yuan, Feng
    Yao, Lina
    Benatallah, Boualem
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4227 - 4233
  • [9] Cross-Domain Graph Convolutions for Adversarial Unsupervised Domain Adaptation
    Zhu, Ronghang
    Jiang, Xiaodong
    Lu, Jiasen
    Li, Sheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 3847 - 3858
  • [10] Adversarial Learning of Transitive Semantic Features for Cross-Domain Recommendation
    Li, Zhetao
    Qiao, Pengpeng
    Zhang, Yuanxing
    Bian, Kaigui
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,