Constructing a Size-Controllable Spherical P2-Type Layered Oxides Cathode That Achieves Practicable Sodium-Ion Batteries

被引:1
|
作者
Yin, Shuo [1 ]
Tao, Zongzhi [2 ]
Zhang, Yuying [1 ]
Zhang, Xinpeng [1 ]
Yu, Lai [2 ]
Ji, Fangli [1 ]
Ma, Xinyi [2 ]
Yuan, Guohe [1 ]
Zhang, Genqiang [2 ]
机构
[1] CNGR Adv Mat Co Ltd, Changsha 410600, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion battery; layered metal oxides; controllingprecursors; morphological design; cylindrical cell; NI; CHALLENGES; PHASE; CO; LI;
D O I
10.1021/acsami.4c04855
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
P2-type layered metal oxides are regarded as promising cathode materials for sodium-ion batteries due to their high voltage platform and rapid Na+ diffusion kinetics. However, limited capacity and unfavorable cycling stability resulting from inevitable phase transformation and detrimental structure collapse hinder their future application. Herein, based on P2-type Na0.67Ni0.18Mn0.67Cu0.1Zn0.05O2, we synthesized a series of secondary spherical morphology cathodes with different radii derived from controlling precursors prepared by a coprecipitation method, which can be promoted to large-scale production. Consequently, the synthesized materials possessed a high tap density of 1.52 g cm(-3) and a compacted density of 3.2 g cm(-3). The half cells exhibited a specific capacity of 111.8 mAh g(-1) at a current density of 0.1 C as well as an 82.64% capacity retention with a high initial capacity of 85.80 mAh g(-1) after 1000 cycles under a rate of 5 C. Notably, in situ X-ray diffraction revealed a reversible P2-OP4 phase transition and displayed a tiny volume change of 6.96% during the charge/discharge process, indicating an outstanding cycling stability of the modified cathode. Commendably, the cylindrical cell achieved a capacity of 4.7 Ah with almost no change during 1000 cycles at 2 C, suggesting excellent potential for future applications.
引用
收藏
页码:26340 / 26347
页数:8
相关论文
共 50 条
  • [1] Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
    Xiao, Jun
    Zhang, Fan
    Tang, Kaikai
    Li, Xiao
    Wang, Dandan
    Wang, Yong
    Liu, Hao
    Wu, Minghong
    Wang, Guoxiu
    ACS CENTRAL SCIENCE, 2019, 5 (12) : 1937 - 1945
  • [2] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):
  • [3] Structural Evolution in P2-type Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Liu, Zhengbo
    Liu, Jun
    CHEMNANOMAT, 2022, 8 (02)
  • [4] Research progress on P2-type layered oxide cathode materials for sodium-ion batteries
    Wu, Chen
    Xu, Yuxing
    Song, Jiechen
    Hou, Ying
    Jiang, Shiyang
    He, Rui
    Wei, Aijia
    Tan, Qiangqiang
    Chemical Engineering Journal, 1600, 500
  • [5] P2-type layered oxide cathode with honeycomb-ordered superstructure for sodium-ion batteries
    Yin, Wenyu
    Huang, Zhixiong
    Zhang, Tengfei
    Yang, Tianqi
    Ji, Houpeng
    Zhou, Yujia
    Shi, Shaojun
    Zhang, Yongqi
    ENERGY STORAGE MATERIALS, 2024, 69
  • [6] P2-Type Layered Oxide Cathode with Honeycomb-Ordered Superstructure for Sodium-Ion Batteries
    Yin, Wenyu
    Huang, Zhixiong
    Zhang, Tengfei
    Yang, Tianqi
    Ji, Houpeng
    Zhou, Yujia
    Shi, Shaojun
    Zhang, Yongqi
    SSRN, 2024,
  • [7] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [8] The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries
    Tang, Ke
    Huang, Yan
    Xie, Xin
    Cao, Shuang
    Liu, Lei
    Liu, Min
    Huang, Yuehua
    Chang, Baobao
    Luo, Zhigao
    Wang, Xianyou
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [9] Sodium Formate as a Highly Efficient Sodium Compensation Additive for Sodium-Ion Batteries with a P2-Type Layered Oxide Cathode
    Binyu Zhao
    Fengping Zhang
    Weiliang Li
    Wenwei Wu
    Shiming Qiu
    Jian Ren
    Linyuan Wei
    Lin Xu
    Xuehang Wu
    Journal of Electronic Materials, 2024, 53 : 1964 - 1974
  • [10] Sodium Formate as a Highly Efficient Sodium Compensation Additive for Sodium-Ion Batteries with a P2-Type Layered Oxide Cathode
    Zhao, Binyu
    Zhang, Fengping
    Li, Weiliang
    Wu, Wenwei
    Qiu, Shiming
    Ren, Jian
    Wei, Linyuan
    Xu, Lin
    Wu, Xuehang
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (04) : 1956 - 1963