Employing combined spatial and frequency domain image features for machine learning-based malware detection

被引:0
|
作者
Bashar, Abul [1 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Comp Engn, Khobar 31952, Saudi Arabia
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 07期
关键词
image-based data; spatial and frequency domain; malware identification; machine learning classifiers; feature extraction; feature hybridization; FRAMEWORK;
D O I
10.3934/era.2024192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ubiquitous adoption of Android devices has unfortunately brought a surge in malware threats, compromising user data, privacy concerns, and financial and device integrity, to name a few. To combat this, numerous efforts have explored automated botnet detection mechanisms, with anomalybased approaches leveraging machine learning (ML) gaining attraction due to their signature-agnostic nature. However, the problem lies in devising accurate ML models which capture the ever evolving landscape of malwares by effectively leveraging all the possible features from Android application packages (APKs).This paper delved into this domain by proposing, implementing, and evaluating an imagebased Android malware detection (AMD) framework that harnessed the power of feature hybridization. The core idea of this framework was the conversion of text-based data extracted from Android APKs into grayscale images. The novelty aspect of this work lied in the unique image feature extraction strategies and their subsequent hybridization to achieve accurate malware classification using ML models. More specifically, four distinct feature extraction methodologies, namely, Texture and histogram of oriented gradients (HOG) from spatial domain, and discrete wavelet transform (DWT) and Gabor from the frequency domain were employed to hybridize the features for improved malware identification. To this end, three image-based datasets, namely, Dex, Manifest, and Composite, derived from the information security centre of excellence (ISCX) Android Malware dataset, were leveraged to evaluate the optimal data source for botnet classification. Popular ML classifiers, including naive Bayes (NB), multilayer perceptron (MLP), support vector machine (SVM), and random forest (RF), were employed for the classification task. The experimental results demonstrated the efficacy of the proposed framework, achieving a peak classification accuracy of 93.03% and recall of 97.1% for the RF classifier using the Manifest dataset and a combination of Texture and HOG features. These findings validate the proof-of-concept and provide valuable insights for researchers exploring ML/deep learning (DL) approaches in the domain of AMD.
引用
收藏
页码:4255 / 4290
页数:36
相关论文
共 50 条
  • [1] Machine learning-based malware detection on Android devices using behavioral features
    Urmila, T. S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4659 - 4664
  • [2] Malware detection using image-based features and machine learning methods
    Gungor, Aslihan
    Dogru, Ibrahim Alper
    Barisci, Necaattin
    Toklu, Sinan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (03): : 1781 - 1792
  • [3] Android malware detection based on image-based features and machine learning techniques
    Unver, Halil Murat
    Bakour, Khaled
    SN APPLIED SCIENCES, 2020, 2 (07):
  • [4] Android malware detection based on image-based features and machine learning techniques
    Halil Murat Ünver
    Khaled Bakour
    SN Applied Sciences, 2020, 2
  • [5] Leveraging Machine Learning-Based PDF Malware Detection in Snort
    Chbib, Fadlallah
    Mustafa, Ali
    Khatoun, Rida
    International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2024, 2024,
  • [6] A survey on machine learning-based malware detection in executable files
    Singh, Jagsir
    Singh, Jaswinder
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 112
  • [7] Transferability of Adversarial Examples in Machine Learning-based Malware Detection
    Hu, Yang
    Wang, Ning
    Chen, Yimin
    Lou, Wenjing
    Hou, Y. Thomas
    2022 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2022, : 28 - 36
  • [8] On the Influence of Image Settings in Deep Learning-based Malware Detection
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    Vinod, P.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 669 - 676
  • [9] An Adversarial Reinforcement Learning Framework for Robust Machine Learning-based Malware Detection
    Ebrahimi, Mohammadreza
    Li, Weifeng
    Chai, Yidong
    Pacheco, Jason
    Chen, Hsinchun
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 567 - 576
  • [10] Rapidrift: Elementary Techniques to Improve Machine Learning-Based Malware Detection
    Manikandaraja, Abishek
    Aaby, Peter
    Pitropakis, Nikolaos
    COMPUTERS, 2023, 12 (10)