Pathway to a fully data-driven geotechnics: Lessons from materials informatics

被引:0
|
作者
Wu, Stephen [1 ,2 ]
Otake, Yu [3 ]
Higo, Yosuke [4 ]
Yoshida, Ikumasa [5 ]
机构
[1] Res Org Informat & Syst, Inst Stat Math, Midori Cho 10-3, Tachikawa, Tokyo 1908562, Japan
[2] Grad Univ Adv Studies, Dept Stat Sci, Midori Cho 10-3, Tachikawa, Tokyo 1908562, Japan
[3] Tohoku Univ, Dept Civil Environm Engn, 6-6-06 Aramaki Aza Aoba,Aoba Ku, Sendai, Miyagi 9808579, Japan
[4] Kyoto Univ, Grad Sch Engn, Dept Urban Management, C1-235 Kyotodaigaku Katsura,Nishikyo Ku, Kyoto 6158540, Japan
[5] Tokyo City Univ, Dept Urban & Civil Engn, 1-28-1 Tamazutsumi,Setagaya Ku,Meguro Ku, Tokyo 1588557, Japan
关键词
Machine learning; Data-driven; Geotechnics informatics; Open science; DEEP NEURAL-NETWORKS; BIG DATA; GAME; GO;
D O I
10.1016/j.sandf.2024.101471
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper elucidates the challenges and opportunities inherent in integrating data-driven methodologies into geotechnics, drawing inspiration from the success of materials informatics. Highlighting the intricacies of soil complexity, heterogeneity, and the lack of comprehensive data, the discussion underscores the pressing need for community-driven database initiatives and open science movements. By leveraging the transformative power of deep learning, particularly in feature extraction from high-dimensional data and the potential of transfer learning, we envision a paradigm shift towards a more collaborative and innovative geotechnics field. The paper concludes with a forward-looking stance, emphasizing the revolutionary potential brought about by advanced computational tools like large language models in reshaping geotechnics informatics. (c) 2023 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Materials informatics: Facilitating the integration of data-driven materials research with education
    L. M. Bartolo
    S. C. Glotzer
    C. S. Lowe
    A. C. Powell
    D. R. Sadoway
    J. A. Warren
    V. K. Tewary
    M. J. M. Krane
    K. Rajan
    [J]. JOM, 2008, 60 : 51 - 52
  • [2] Materials informatics: Facilitating the integration of data-driven materials research with education
    Bartolo, L. M.
    Glotzer, S. C.
    Lowe, C. S.
    Powell, A. C.
    Sadoway, D. R.
    Warren, J. A.
    Tewary, V. K.
    Krane, M. J. M.
    Rajan, K.
    [J]. JOM, 2008, 60 (03) : 51 - 52
  • [3] Genome informatics for data-driven biology
    Kenta Nakai
    Jean-Philippe Vert
    [J]. Genome Biology, 3 (4):
  • [4] Data-driven visualization schema of a materials informatics curriculum: Convergence of materials science and information science
    Einarsson, Erik
    Wodo, Olga
    Nalam, Prathima C.
    Broderick, Scott R.
    Reyes, Kristofer G.
    Pitman, E. Bruce
    Rajan, Krishna
    [J]. MRS ADVANCES, 2020, 5 (07) : 293 - 303
  • [5] Data-driven visualization schema of a materials informatics curriculum: Convergence of materials science and information science
    Erik Einarsson
    Olga Wodo
    Prathima C. Nalam
    Scott R. Broderick
    Kristofer G. Reyes
    E. Bruce Pitman
    Krishna Rajan
    [J]. MRS Advances, 2020, 5 : 293 - 303
  • [6] Special issue: Informatics & data-driven medicine
    Izonin, Ivan
    Shakhovska, Nataliya
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6430 - 6433
  • [7] JAMIP: an artificial-intelligence aided data-driven infrastructure for computational materials informatics
    Zhao, Xin-Gang
    Zhou, Kun
    Xing, Bangyu
    Zhao, Ruoting
    Luo, Shulin
    Li, Tianshu
    Sun, Yuanhui
    Na, Guangren
    Xie, Jiahao
    Yang, Xiaoyu
    Wang, Xinjiang
    Wang, Xiaoyu
    He, Xin
    Lv, Jian
    Fu, Yuhao
    Zhang, Lijun
    [J]. SCIENCE BULLETIN, 2021, 66 (19) : 1973 - 1985
  • [8] Data-Driven Materials Informatics for Novel Piezoelectric Janus-Type Nanomaterials Discovery
    Hwang, Woohyun
    Oh, Seung-Hyun Victor
    Shin, Jungho
    Soon, Aloysius
    Yoo, Su-Hyun
    Jang, Woosun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (24): : 6451 - 6457
  • [9] Data-driven informatics tools targeting patients and providers
    Ohno-Machado, Lucila
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (06) : 1039 - 1039
  • [10] Lessons for Data-Driven Modelling from Harmonics in the Norwegian Grid
    Hoffmann, Volker
    Torsaeter, Bendik Nybakk
    Rosenlund, Gjert Hovland
    Andresen, Christian Andre
    [J]. ALGORITHMS, 2022, 15 (06)