Multiple instance learning for eosinophil quantification of sinonasal histopathology images: A hierarchical determination on whole slide images

被引:0
|
作者
Hsu, Yen-Chi [1 ]
Lin, Kao-Tsung [2 ]
Lee, Ming-Sui [1 ]
Shen, Li-Sung [1 ]
Yeh, Te-Huei [2 ]
Lin, Yi-Tsen [2 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[2] Natl Taiwan Univ Hosp, Dept Otolaryngol, 7 Chunh Shan South Rd, Taipei 10002, Taiwan
关键词
chronic rhinosinusitis; convolutional neural network; eosinophils; multiple instance learning;
D O I
10.1002/alr.23365
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Key points We proposed a hierarchical framework including an unsupervised candidate image selection and a weakly supervised patch image detection based on multiple instance learning (MIL) to effectively estimate eosinophil quantities in tissue samples from whole slide images. MIL is an innovative approach that can help deal with the variability in cell distribution detection and enable automated eosinophil quantification from sinonasal histopathological images with a high degree of accuracy. The study lays the foundation for further research and development in the field of automated histopathological image analysis, and validation on more extensive and diverse datasets will contribute to real-world application.
引用
收藏
页码:1513 / 1516
页数:4
相关论文
共 50 条
  • [1] ACTIVE LEARNING ENHANCES CLASSIFICATION OF HISTOPATHOLOGY WHOLE SLIDE IMAGES WITH ATTENTION-BASED MULTIPLE INSTANCE LEARNING
    Sadafi, Ario
    Navab, Nassir
    Marr, Carsten
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [2] Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images
    Thandiackal, Kevin
    Chen, Boqi
    Pati, Pushpak
    Jaume, Guillaume
    Williamson, Drew F. K.
    Gabrani, Maria
    Goksel, Orcun
    [J]. COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 699 - 715
  • [3] Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
    Tavolara, Thomas E.
    Gurcan, Metin N.
    Niazi, M. Khalid Khan
    [J]. CANCERS, 2022, 14 (23)
  • [4] Efficient subtyping of ovarian cancer histopathology whole slide images using active sampling in multiple instance learning
    Breen, Jack
    Allen, Katie
    Zucker, Kieran
    Hall, Geoff
    Orsi, Nicolas M.
    Ravikumar, Nishant
    [J]. MEDICAL IMAGING 2023, 2023, 12471
  • [5] Immune subtyping of melanoma whole slide images using multiple instance learning
    Godson, Lucy
    Alemi, Navid
    Nsengimana, Jeremie
    Cook, Graham P.
    Clarke, Emily L.
    Treanor, Darren
    Bishop, D. Timothy
    Newton-Bishop, Julia
    Gooya, Ali
    Magee, Derek
    [J]. MEDICAL IMAGE ANALYSIS, 2024, 93
  • [6] AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images
    Liu, Pei
    Ji, Luping
    Ye, Feng
    Fu, Bo
    [J]. MEDICAL IMAGE ANALYSIS, 2024, 91
  • [7] CVMIL: Cluster Variance Multiple Instance Learning for Whole Slide Images Survival Prediction
    Chen, Shiqi
    Cai, Du
    Li, Chenghang
    Wang, Ruixuan
    Gao, Feng
    [J]. 2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,
  • [8] Transfer Learning Approach for Classification of Histopathology Whole Slide Images
    Ahmed, Shakil
    Shaikh, Asadullah
    Alshahrani, Hani
    Alghamdi, Abdullah
    Alrizq, Mesfer
    Baber, Junaid
    Bakhtyar, Maheen
    [J]. SENSORS, 2021, 21 (16)
  • [9] Multiple Instance Learning for Heterogeneous Images: Training a CNN for Histopathology
    Couture, Heather D.
    Marron, J. S.
    Perou, Charles M.
    Troester, Melissa A.
    Niethammer, Marc
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 254 - 262
  • [10] DEEP HIERARCHICAL MULTIPLE INSTANCE LEARNING FOR WHOLE SLIDE IMAGE CLASSIFICATION
    Zhou, Yuanpin
    Lu, Yao
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,