Novel Approach towards a Fully Deep Learning-Based IoT Receiver Architecture: From Estimation to Decoding

被引:0
|
作者
Boeding, Matthew [1 ]
Hempel, Michael [1 ]
Sharif, Hamid [1 ]
机构
[1] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
关键词
IoT; 5G; operational technology; OFDM; receiver; deep learning; machine learning;
D O I
10.3390/fi16050155
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the Internet of Things (IoT) continues to expand, wireless communication is increasingly widespread across diverse industries and remote devices. This includes domains such as Operational Technology in the Smart Grid. Notably, there is a surge in resource-constrained devices leveraging wireless communication, especially with the advances of 5G/6G technology. Nevertheless, the transmission of wireless communications demands substantial power and computational resources, presenting a significant challenge to these devices and their operations. In this work, we propose the use of deep learning to improve the Bit Error Rate (BER) performance of Orthogonal Frequency Division Multiplexing (OFDM) wireless receivers. By improving the BER performance of these receivers, devices can transmit with less power, thereby improving IoT devices' battery life. The architecture presented in this paper utilizes a depthwise Convolutional Neural Network (CNN) for channel estimation and demodulation, whereas a Graph Neural Network (GNN) is utilized for Low-Density Parity Check (LDPC) decoding, tested against a proposed (1998, 1512) LDPC code. Our results show higher performance than traditional receivers in both isolated tests for the CNN and GNN, and a combined end-to-end test with lower computational complexity than other proposed deep learning models. For BER improvement, our proposed approach showed a 1 dB improvement for eliminating BER in QPSK models. Additionally, it improved 16-QAM Rician BER by five decades, 16-QAM LOS model BER by four decades, 64-QAM Rician BER by 2.5 decades, and 64-QAM LOS model BER by three decades.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A novel deep learning-based approach for detecting attacks in social IoT
    Das, R. Mohan
    Kumar, U. Arun
    Gopinath, S.
    Gomathy, V.
    Natraj, N. A.
    Anushkannan, N. K.
    Balashanmugham, Adhavan
    SOFT COMPUTING, 2023,
  • [2] A Deep Learning-Based Novel Approach for Weed Growth Estimation
    Mishra, Anand Muni
    Harnal, Shilpi
    Mohiuddin, Khalid
    Gautam, Vinay
    Nasr, Osman A.
    Goyal, Nitin
    Alwetaishi, Mamdooh
    Singh, Aman
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (02): : 1157 - 1172
  • [3] A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems
    Baniasadi, Sahba
    Rostami, Omid
    Martin, Diego
    Kaveh, Mehrdad
    SENSORS, 2022, 22 (12)
  • [4] A Novel Deep Transfer Learning-Based Approach for Face Pose Estimation
    Rusia, Mayank Kumar
    Singh, Dushyant Kumar
    Aquib Ansari, Mohd.
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2024, 24 (02) : 105 - 121
  • [5] MUS Model: A Deep Learning-Based Architecture for IoT Intrusion Detection
    Yan, Yu
    Yang, Yu
    Fang, Shen
    Gao, Minna
    Chen, Yiding
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 875 - 896
  • [6] On Deep Learning-Based Channel Decoding
    Gruber, Tobias
    Cammerer, Sebastian
    Hoydis, Jakob
    ten Brink, Stephan
    2017 51ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2017,
  • [7] Deep Learning-Based Sphere Decoding
    Mohammadkarimi, Mostafa
    Mehrabi, Mehrtash
    Ardakani, Masoud
    Jing, Yindi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (09) : 4368 - 4378
  • [8] Towards Industrial IoT-AR Systems using Deep Learning-Based Object Pose Estimation
    Sun, Yongbin
    Kantareddy, Sai Nithin Reddy
    Siegel, Joshua
    Armengol-Urpi, Alexandre
    Wu, Xiaoyu
    Wang, Hongyu
    Sarma, Sanjay
    2019 IEEE 38TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2019,
  • [9] Secure IoT Healthcare Architecture with Deep Learning-Based Access Control System
    Thilagam, K.
    Beno, A.
    Lakshmi, M. Vanitha
    Wilfred, C. Bazil
    George, Santhi M.
    Karthikeyan, M.
    Peroumal, Vijayakumar
    Ramesh, C.
    Karunakaran, Prabakaran
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [10] Very Deep Learning-Based Illumination Estimation Approach With Cascading Residual Network Architecture (CRNA)
    Choi, Ho-Hyoung
    Yun, Byoung-Ju
    IEEE ACCESS, 2021, 9 : 133552 - 133560