A Review and Analysis of Cybersecurity Threats and Vulnerabilities, by Development of a Fuzzy Rule-Based Expert System

被引:0
|
作者
Churu, Matida [1 ,2 ]
Blaauw, Dewald [1 ]
Watson, Bruce [1 ,2 ]
机构
[1] Stellenbosch Univ, Ctr AI Res CAIR, Sch Data Sci & Computat Thinking & Informat Sci, Stellenbosch, South Africa
[2] Stellenbosch Univ, Dept Informat Sci, Stellenbosch, South Africa
关键词
cybersecurity; ping time; download time; fuzzy expert systems;
D O I
10.1007/978-3-031-57639-3_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past decade, cybersecurity threats and vulnerabilities have significantly increased, primarily due to the widespread adoption of IoT and the expanding use of systems and networks. As technology advances, cyber attackers continually improve their attack methods. Cybersecurity professionals employ the same technologies as cyber attackers for defense purposes. Effectively addressing this challenge requires the development of reliable and comprehensive cybersecurity systems for detection and mitigation. To tackle this issue, a GNS3-Fuzzy Rule-Based Expert System was created, focusing on assessing the risk of each threat over time. The system involved simulating a Local Area Network in GNS3, where attacks were executed using Kali Linux. Throughout the attacks, key metrics such as PC to Server ping time, PC-to-PC ping time, and Download time were recorded and averaged. These metrics were then utilized as inputs and ranges in the fuzzy rule-based expert system. The fuzzy rule-based expert system was developed using the MATLAB software, the fuzzy logic toolbox, and the Simulink tool. The system's output was the risk level associated with different threats. Based on the collected data and the developed system, it was observed that as the PC-to-server time, PC-to-PC time, and download time increase, there is a corresponding elevation in the risk level of the system. Implementing this proposed system provides a dependable and precise solution for detecting the risk level of threats posed to systems.
引用
下载
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [1] ON LEARNING IN A FUZZY RULE-BASED EXPERT SYSTEM
    GEYERSCHULZ, A
    KYBERNETIKA, 1992, 28 : 33 - 36
  • [2] A Fuzzy Rule-Based Expert System for Diagnosing Asthma
    Zarandi, M. H. Fazel
    Zolnoori, M.
    Moin, M.
    Heidarnejad, H.
    SCIENTIA IRANICA TRANSACTION E-INDUSTRIAL ENGINEERING, 2010, 17 (02): : 129 - 142
  • [3] A fuzzy rule-based expert system for marine bioassessment
    Farrell, J
    Kandel, A
    FUZZY SETS AND SYSTEMS, 1997, 89 (01) : 27 - 34
  • [4] A fuzzy rule-based expert system for diagnosing asthma
    Fazei Zarandi, M.H.
    Zolnoori, M.
    Moin, M.
    Heidarnejad, H.
    Scientia Iranica, 2010, 17 (2 E) : 129 - 142
  • [5] A Fuzzy Rule-based Expert System for the Prognosis of the Risk of Development of the Breast Cancer
    Khezri, R.
    Hosseini, R.
    Mazinani, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2014, 27 (10): : 1557 - 1564
  • [6] APPLICATIONS OF FUZZY-SETS TO RULE-BASED EXPERT SYSTEM-DEVELOPMENT
    LEA, RN
    1989 GODDARD CONFERENCE ON SPACE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1989, 3033 : 385 - 388
  • [7] Diagnosis of hypothyroidism using a fuzzy rule-based expert system
    Sajadi, Negar Asaad
    Borzouei, Shiva
    Mahjub, Hossein
    Farhadian, Maryam
    CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH, 2019, 7 (04): : 519 - 524
  • [8] Fuzzy Rule-Based Expert System for Assessment Severity of Asthma
    Maryam Zolnoori
    Mohammad Hossein Fazel Zarandi
    Mostafa Moin
    Shahram Teimorian
    Journal of Medical Systems, 2012, 36 : 1707 - 1717
  • [9] Fuzzy Rule-based Expert System for Diagnosis of Thyroid Disease
    Biyouki, S. Amrollahi
    Zarandi, M. H. Fazel
    Turksen, I. B.
    2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2015, : 354 - 360
  • [10] Fuzzy Rule-Based Expert System for Assessment Severity of Asthma
    Zolnoori, Maryam
    Zarandi, Mohammad Hossein Fazel
    Moin, Mostafa
    Teimorian, Shahram
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) : 1707 - 1717