Free commutative two-step-associative algebras

被引:0
|
作者
Ismailov, Nurlan [1 ]
Shestakov, Ivan [2 ,3 ]
Zhang, Zerui [4 ]
机构
[1] Astana IT Univ, Astana, Kazakhstan
[2] Univ Sao Paulo, Inst Matemat & Stat, Sao Paulo, Brazil
[3] Sobolev Inst Math, Novosibirsk, Russia
[4] South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
基金
巴西圣保罗研究基金会;
关键词
Automorphism; commutative two-step-associative algebra; Jacobian matrix; AUTOMORPHISMS; RINGS;
D O I
10.1080/00927872.2024.2362345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct linear bases for free commutative two-step-associative algebras and study their automorphisms. It turns out that every automorphism of a polynomial algebra without unit can be lifted to an automorphism of a free commutative two-step-associative algebra. Moreover, for any n >= 2, a wild automorphism is constructed for the n-generated free commutative two-step-associative algebra which is not stably tame and cannot be lifted to an automorphism of the n-generated free commutative nonassociative algebra.
引用
收藏
页码:4992 / 5004
页数:13
相关论文
共 50 条