Identifying Cell Type-Specific Chemokine Correlates with Hierarchical Signal Extraction from Single-Cell Transcriptomes

被引:0
|
作者
Chao, Sherry [1 ]
Brenner, Michael P. [2 ]
Hacohen, Nir [3 ]
机构
[1] Harvard Univ, Dept Biomed Informat, Boston, MA 02115 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Harvard Med Sch, Boston, MA 02115 USA
关键词
Interpretable machine learning; Translational cancer research; Single-cell RNA-sequencing; Chemokines; MIGRATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biological data is inherently heterogeneous and high-dimensional. Single-cell sequencing of transcripts in a tissue sample generates data for thousands of cells, each of which is characterized by upwards of tens of thousands of genes. How to identify the subsets of cells and genes that are associated with a label of interest remains an open question. In this paper, we integrate a signal-extractive neural network architecture with axiomatic feature attribution to classify tissue samples based on single-cell gene expression profiles. This approach is not only interpretable but also robust to noise, requiring just 5% of genes and 23% of cells in an in silico tissue sample to encode signal in order to distinguish signal from noise with greater than 70% accuracy. We demonstrate its applicability in two real-world settings for discovering cell type-specific chemokine correlates: predicting response to immune checkpoint inhibitors in multiple tissue types and classifying DNA mismatch repair status in colorectal cancer. Our approach not only significantly outperforms traditional machine learning classifiers but also presents actionable biological hypotheses of chemokine-mediated tumor immunogenicity.
引用
收藏
页码:254 / 265
页数:12
相关论文
共 50 条
  • [1] Cell type identification from single-cell transcriptomes in melanoma
    Huo, Qiuyan
    Yin, Yu
    Liu, Fangfang
    Ma, Yuying
    Wang, Liming
    Qin, Guimin
    BMC MEDICAL GENOMICS, 2021, 14 (SUPPL 5)
  • [2] Cell type identification from single-cell transcriptomes in melanoma
    Qiuyan Huo
    Yu Yin
    Fangfang Liu
    Yuying Ma
    Liming Wang
    Guimin Qin
    BMC Medical Genomics, 14
  • [3] scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq
    Chen, Luxiao
    Guo, Zhenxing
    Deng, Tao
    Wu, Hao
    GENOME BIOLOGY, 2024, 25 (01):
  • [4] Cell Type-Specific Decomposition of Gingival Tissue Transcriptomes
    Momen-Heravi, F.
    Friedman, R. A.
    Albeshri, S.
    Sawle, A.
    Kebschull, M.
    Kuhn, A.
    Papapanou, P. N.
    JOURNAL OF DENTAL RESEARCH, 2021, 100 (05) : 549 - 556
  • [5] eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data
    Breeze, Charles E.
    Paul, Dirk S.
    van Dongen, Jenny
    Butcher, Lee M.
    Ambrose, John C.
    Barrett, James E.
    Lowe, Robert
    Rakyan, Vardhman K.
    Iotchkova, Valentina
    Frontini, Mattia
    Downes, Kate
    Ouwehand, Willem H.
    Laperle, Jonathan
    Jacques, Pierre-ETienne
    Bourque, Guillaume
    Bergmann, Anke K.
    Siebert, Reiner
    Vellenga, Edo
    Saeed, Sadia
    Matarese, Filomena
    Martens, Joost H. A.
    Stunnenberg, Hendrik G.
    Teschendorff, Andrew E.
    Herrero, Javier
    Birney, Ewan
    Dunham, Ian
    Beck, Stephan
    CELL REPORTS, 2016, 17 (08): : 2137 - 2150
  • [6] Single-cell genomics identifies cell type-specific molecular changes in autism
    Velmeshev, Dmitry
    Schirmer, Lucas
    Jung, Diane
    Haeussler, Maximilian
    Perez, Yonatan
    Mayer, Simone
    Bhaduri, Aparna
    Goyal, Nitasha
    Rowitch, David H.
    Kriegstein, Arnold R.
    SCIENCE, 2019, 364 (6441) : 685 - +
  • [7] Constructing cell lineages from single-cell transcriptomes
    Chen, Jinmiao
    Renia, Laurent
    Ginhoux, Florent
    MOLECULAR ASPECTS OF MEDICINE, 2018, 59 : 95 - 113
  • [8] Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data
    Wang, Jiebiao
    Roeder, Kathryn
    Devlin, Bernie
    GENOME RESEARCH, 2021, 31 (10) : 1807 - 1818
  • [9] Cell type-specific changes identified by single-cell transcriptomics in Alzheimer’s disease
    Tain Luquez
    Pallavi Gaur
    Ivy M Kosater
    Matti Lam
    Dylan I Lee
    Jason Mares
    Fahad Paryani
    Archana Yadav
    Vilas Menon
    Genome Medicine, 14
  • [10] Cell type-specific changes identified by single-cell transcriptomics in Alzheimer's disease
    Luquez, Tain
    Gaur, Pallavi
    Kosater, Ivy M.
    Lam, Matti
    Lee, Dylan, I
    Mares, Jason
    Paryani, Fahad
    Yadav, Archana
    Menon, Vilas
    GENOME MEDICINE, 2022, 14 (01)