An efficient deep learning mechanisms for IoT/Non-IoT devices classification and attack detection in SDN-enabled smart environment

被引:0
|
作者
Malini, P. [1 ]
Kavitha, K. R. [2 ]
机构
[1] Anna Univ, Vivekanandha Coll Technol Women, Dept Elect & Commun Engn, Tiruchencode 637205, Tamil Nadu, India
[2] Sona Coll Technol, Dept Elect & Commun Engn, Salem 636005, Tamil Nadu, India
关键词
SDN-enabled FiWi IoT network; Dynamic resource allocation; Transformer-driven deep intelligent model; Slice attention mechanism; Deep learning; Chaotic seagull optimization capsule; autoencoder model; NEURAL-NETWORK; FEATURE-SELECTION; SCHEME;
D O I
10.1016/j.cose.2024.103818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, the development of Internet of Things (IoT) applications has increased, resulting in higher demands for sufficient bandwidth, data rates, latency, and quality of service (QoS). In advanced communications, managing network resources for allocating IoT services and identifying the exact IoT devices connected to a network is a major concern. The existing studies have introduced various methods for classifying IoT devices in a network. However, the previous studies faced challenges like limited attributes, low efficiency, inappropriate features, and computational complexities. Also, the existing studies failed to concentrate on IoT/Non-IoT classification along with attack detection. Detecting attacks on IoT devices is critical for making network services more effective. Thus, the proposed study introduces an efficient IoT device classification and attack detection mechanism using software defined networking (SDN)-enabled fiber-wireless access networks internet of things (FiWi IoT) architecture. Initially, an effective resource allocation process is performed to mitigate the delay constraint issues by introducing a hybrid parallel neural network-based dynamic bandwidth allocation (DBA) method. Then, the input traffic information is gathered from the resource-efficient SDN-enabled FiWi IoT network, and the input data is pre-processed to eliminate unwanted noises using min-max normalization and standardization. Next, the essential attributes are extracted to attain enhanced classification performance. To reduce the feature dimensionality problem and thereby solve complexity issues, the most optimal features are selected by a new chaotic seagull optimization (CSO) approach. After that, IoT/non-IoT classification is performed using a transformer-driven deep intelligent model. Finally, the attacks are detected and classified by introducing a novel slice attention-based deep capsule autoencoder (SA_DCAE) model. For experimentation, the Python 3.7.0 tool is used in this work, and the performance of proposed classifiers is measured by evaluating varied matrices. Also, the comparison analysis proves the superiority of the proposed techniques to other existing methods.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Optimal Deep Learning Driven Intrusion Detection in SDN-Enabled IoT Environment
    Maray, Mohammed
    Alshahrani, Haya Mesfer
    Alissa, Khalid A.
    Alotaibi, Najm
    Gaddah, Abdulbaset
    Meree, Ali
    Othman, Mahmoud
    Hamza, Manar Ahmed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6587 - 6604
  • [2] Review of Botnet Attack Detection in SDN-Enabled IoT Using Machine Learning
    Negera, Worku Gachena
    Schwenker, Friedhelm
    Debelee, Taye Girma
    Melaku, Henock Mulugeta
    Ayano, Yehualashet Megeresa
    SENSORS, 2022, 22 (24)
  • [3] Low-rate DDoS attack Detection using Deep Learning for SDN-enabled IoT Networks
    Alashhab, Abdussalam Ahmed
    Zahid, Mohd Soperi Mohd
    Muneer, Amgad
    Abdullahi, Mujaheed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 371 - 377
  • [4] Low-rate DDoS attack Detection using Deep Learning for SDN-enabled IoT Networks
    Alashhab A.A.
    Zahid M.S.M.
    Muneer A.
    Abdukkahi M.
    International Journal of Advanced Computer Science and Applications, 2022, 13 (11): : 371 - 377
  • [5] Optimal Hybrid Deep Learning Enabled Attack Detection and Classification in IoT Environment
    Alruwaili, Fahad F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 99 - 115
  • [6] Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks
    Chaganti, Rajasekhar
    Suliman, Wael
    Ravi, Vinayakumar
    Dua, Amit
    INFORMATION, 2023, 14 (01)
  • [7] SDN-Enabled FiWi-IoT Smart Environment Network Traffic Classification Using Supervised ML Models
    Ganesan, Elaiyasuriyan
    Hwang, I-Shyan
    Liem, Andrew Tanny
    Ab-Rahman, Mohammad Syuhaimi
    PHOTONICS, 2021, 8 (06)
  • [8] A hybrid approach for malware detection in SDN-enabled IoT scenarios
    Souza, Cristian H. M.
    Arima, Carlos H.
    INTERNET TECHNOLOGY LETTERS, 2024,
  • [9] Intrusion Detection System for SDN-enabled IoT Networks using Machine Learning Techniques
    Ashraf, Javed
    Moustafa, N.
    Bukhshi, Asim D.
    Javed, Abdullah
    2021 IEEE 25TH INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE WORKSHOPS (EDOCW 2021), 2021, : 46 - 52
  • [10] Blockchain and Deep Learning-Based IDS for Securing SDN-Enabled Industrial IoT Environments
    Poorazad, Samira Kamali
    Benzaid, Chafika
    Taleb, Tarik
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2760 - 2765