Braess's Paradox Analog in Physical Networks of Optimal Exploration

被引:1
|
作者
Gounaris, Georgios [1 ]
Katifori, Eleni [1 ,2 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[2] Flatiron Inst, Ctr Computat Biol, New York, NY 10010 USA
关键词
OPTIMIZATION; RESISTANCE; DIFFUSION; DYNAMICS; GRAPH;
D O I
10.1103/PhysRevLett.133.067401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In stochastic exploration of geometrically embedded graphs, intuition suggests that providing a shortcut between a pair of nodes reduces the mean first passage time of the entire graph. Counterintuitively, we find a Braess's paradox analog. For regular diffusion, shortcuts can worsen the overall search efficiency of the network, although they bridge topologically distant nodes. We propose an optimization scheme under which each edge adapts its conductivity to minimize the graph's search time. The optimization reveals a relationship between the structure and diffusion exponent and a crossover from dense to sparse graphs as the exponent increases.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Resolving Braess's Paradox in Random Networks
    Fotakis, Dimitris
    Kaporis, Alexis C.
    Lianeas, Thanasis
    Spirakis, Paul G.
    ALGORITHMICA, 2017, 78 (03) : 788 - 818
  • [2] Resolving Braess’s Paradox in Random Networks
    Dimitris Fotakis
    Alexis C. Kaporis
    Thanasis Lianeas
    Paul G. Spirakis
    Algorithmica, 2017, 78 : 788 - 818
  • [3] Characterizing Braess's Paradox for traffic networks
    Hagstrom, JN
    Abrams, RA
    2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 836 - 841
  • [4] Dynamic Braess's Paradox in Complex Communication Networks
    Xia, Yongxiang
    Hill, David J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (03) : 172 - 176
  • [5] Transport Inefficiency in Branched-Out Mesoscopic Networks: An Analog of the Braess Paradox
    Pala, M. G.
    Baltazar, S.
    Liu, P.
    Sellier, H.
    Hackens, B.
    Martins, F.
    Bayot, V.
    Wallart, X.
    Desplanque, L.
    Huant, S.
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [6] Braess’s paradox and programmable behaviour in microfluidic networks
    Daniel J. Case
    Yifan Liu
    István Z. Kiss
    Jean-Régis Angilella
    Adilson E. Motter
    Nature, 2019, 574 : 647 - 652
  • [7] Braess's paradox and programmable behaviour in microfluidic networks
    Case, Daniel J.
    Liu, Yifan
    Kiss, Istvan Z.
    Angilella, Jean-Regis
    Motter, Adilson E.
    NATURE, 2019, 574 (7780) : 647 - +
  • [8] Optimal sub-networks in traffic assignment problem and the Braess paradox
    Askoura, Y.
    Lebacque, J. P.
    Haj-Salem, H.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2011, 61 (02) : 382 - 390
  • [9] Planning The Electron Traffic In Semiconductor Networks: A Mesoscopic Analog Of The Braess Paradox Encountered In Road Networks
    Huant, S.
    Baltazar, S.
    Liu, P.
    Sellier, H.
    Hackens, B.
    Martins, F.
    Bayot, V.
    Wallart, X.
    Desplanque, L.
    Pala, M. G.
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 229 - +
  • [10] Braess's Paradox in Wireless Networks: The Danger of Improved Technology
    Dinitz, Michael
    Parter, Merav
    DISTRIBUTED COMPUTING, 2013, 8205 : 477 - 491