Transcript-aware analysis of rare predicted loss-of-function variants in the UK Biobank elucidate new isoform-trait associations

被引:0
|
作者
Hoffing, Rachel A. [1 ]
Deaton, Aimee M. [1 ]
Holleman, Aaron M. [1 ]
Krohn, Lynne [1 ]
LoGerfo, Philip J. [1 ]
Plekan, Mollie E. [1 ]
Serrano, Sebastian Akle [1 ]
Nioi, Paul [1 ]
Ward, Lucas D. [1 ]
机构
[1] Alnylam Pharmaceut, Cambridge, MA 02142 USA
关键词
UK Biobank; rare variant; transcriptome; quantitative traits;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A single gene can produce multiple transcripts with distinct molecular functions. Rare-variant association tests often aggregate all coding variants across individual genes, without accounting for the variants' presence or consequence in resulting transcript isoforms. To evaluate the utility of transcript-aware variant sets, rare predicted loss-of-function (pLOF) variants were aggregated for 17,035 protein-coding genes using 55,558 distinct transcript-specific variant sets. These sets were tested for their association with 728 circulating proteins and 188 quantitative phenotypes across 406,921 individuals in the UK Biobank. The transcript-specific approach resulted in larger estimated effects of pLOF variants decreasing serum cis-protein levels compared to the gene-based approach (p(binom <=) 2x10(-16)). Additionally, 251 quantitative trait associations were identified as being significant using the transcript-specific approach but not the gene-based approach, including PCSK5 transcript ENST00000376752 and standing height (transcript-specific statistic, P = 1.3x10(-16), effect = 0.7 SD decrease; gene-based statistic, P = 0.02, effect = 0.05 SD decrease) and LDLR transcript ENST00000252444 and apolipoprotein B (transcript-specific statistic, P = 5.7x10(-20), effect = 1.0 SD increase; gene-based statistic, P = 3.0x10(-4), effect = 0.2 SD increase). This approach demonstrates the importance of considering the effect of pLOFs on specific transcript isoforms when performing rare-variant association studies.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 4 条
  • [1] Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease
    Emdin, Connor A.
    Khera, Amit V.
    Chaffin, Mark
    Klarin, Derek
    Natarajan, Pradeep
    Aragam, Krishna
    Haas, Mary
    Bick, Alexander
    Zekavat, Seyedeh M.
    Nomura, Akihiro
    Ardissino, Diego
    Wilson, James G.
    Schunkert, Heribert
    McPherson, Ruth
    Watkins, Hugh
    Elosua, Roberto
    Bown, Matthew J.
    Samani, Nilesh J.
    Baber, Usman
    Erdmann, Jeanette
    Gupta, Namrata
    Danesh, John
    Chasman, Daniel
    Ridker, Paul
    Denny, Joshua
    Bastarache, Lisa
    Lichtman, Judith H.
    D'Onofrio, Gail
    Mattera, Jennifer
    Spertus, John A.
    Sheu, Wayne H. -H.
    Taylor, Kent D.
    Psaty, Bruce M.
    Rich, Stephen S.
    Post, Wendy
    Rotter, Jerome I.
    Chen, Yii-Der Ida
    Krumholz, Harlan
    Saleheen, Danish
    Gabriel, Stacey
    Kathiresan, Sekar
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease
    Connor A. Emdin
    Amit V. Khera
    Mark Chaffin
    Derek Klarin
    Pradeep Natarajan
    Krishna Aragam
    Mary Haas
    Alexander Bick
    Seyedeh M. Zekavat
    Akihiro Nomura
    Diego Ardissino
    James G. Wilson
    Heribert Schunkert
    Ruth McPherson
    Hugh Watkins
    Roberto Elosua
    Matthew J. Bown
    Nilesh J. Samani
    Usman Baber
    Jeanette Erdmann
    Namrata Gupta
    John Danesh
    Daniel Chasman
    Paul Ridker
    Joshua Denny
    Lisa Bastarache
    Judith H. Lichtman
    Gail D’Onofrio
    Jennifer Mattera
    John A. Spertus
    Wayne H.-H. Sheu
    Kent D. Taylor
    Bruce M. Psaty
    Stephen S. Rich
    Wendy Post
    Jerome I. Rotter
    Yii-Der Ida Chen
    Harlan Krumholz
    Danish Saleheen
    Stacey Gabriel
    Sekar Kathiresan
    [J]. Nature Communications, 9
  • [3] Efficient identification of trait-associated loss-of-function variants in the UK Biobank cohort by exome-sequencing based genotype imputation
    Yu, Wen-Yuan
    Yan, Shan-Shan
    Zhang, Shu-Han
    Ni, Jing-Jing
    Bin-Li, Yu-Fang
    Pei, Yu-Fang
    Zhang, Lei
    [J]. GENETIC EPIDEMIOLOGY, 2023, 47 (02) : 121 - 134
  • [4] A phenome-wide gene-based collapsing analysis of rare loss-of-function and missense variation in 268,451 UK Biobank exomes
    Wang, Q.
    Carss, K.
    Smith, K.
    Petrovski, S.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 103 - 103