Learning Fairness from Demonstrations via Inverse Reinforcement Learning

被引:0
|
作者
Blandin, Jack [1 ]
Kash, Ian [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
关键词
inverse reinforcement learning; group fairness in classification; fairness transfer learning;
D O I
10.1145/3630106.3658539
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Defining fairness in algorithmic contexts is challenging, particularly when adapting to new domains. Our research introduces a novel method for learning and applying group fairness preferences across different classification domains, without the need for manual fine-tuning. Utilizing concepts from inverse reinforcement learning (IRL), our approach enables the extraction and application of fairness preferences from human experts or established algorithms. We propose the first technique for using IRL to recover and adapt group fairness preferences to new domains, offering a low-touch solution for implementing fair classifiers in settings where expert-established fairness tradeoffs are not yet defined.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 50 条
  • [1] Learning Virtual Grasp with Failed Demonstrations via Bayesian Inverse Reinforcement Learning
    Xie, Xu
    Li, Changyang
    Zhang, Chi
    Zhu, Yixin
    Zhu, Song-Chun
    [J]. 2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 1812 - 1817
  • [2] Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations
    Brown, Daniel S.
    Goo, Wonjoon
    Nagarajan, Prabhat
    Niekum, Scott
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] Inverse Reinforcement Learning of Interaction Dynamics from Demonstrations
    Hussein, Mostafa
    Begum, Momotaz
    Petrik, Marek
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 2267 - 2274
  • [4] Analysis of Inverse Reinforcement Learning with Perturbed Demonstrations
    Melo, Francisco S.
    Lopes, Manuel
    Ferreira, Ricardo
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 349 - 354
  • [5] An Unified Approach to Inverse Reinforcement Learning by Oppositive Demonstrations
    Hwang, Kao-Shing
    Jiang, Wei-Cheng
    Tseng, Yi-Chia
    [J]. PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 1664 - 1668
  • [6] Mapless navigation for UAVs via reinforcement learning from demonstrations
    Yang, JiaNan
    Lu, ShengAo
    Han, MingHao
    Li, YunPeng
    Ma, YuTing
    Lin, ZeFeng
    Li, HaoWei
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (05) : 1263 - 1270
  • [7] Mapless navigation for UAVs via reinforcement learning from demonstrations
    YANG JiaNan
    LU ShengAo
    HAN MingHao
    LI YunPeng
    MA YuTing
    LIN ZeFeng
    LI HaoWei
    [J]. Science China Technological Sciences, 2023, (05) : 1263 - 1270
  • [8] Mapless navigation for UAVs via reinforcement learning from demonstrations
    YANG JiaNan
    LU ShengAo
    HAN MingHao
    LI YunPeng
    MA YuTing
    LIN ZeFeng
    LI HaoWei
    [J]. Science China(Technological Sciences)., 2023, 66 (05) - 1270
  • [9] Mapless navigation for UAVs via reinforcement learning from demonstrations
    JiaNan Yang
    ShengAo Lu
    MingHao Han
    YunPeng Li
    YuTing Ma
    ZeFeng Lin
    HaoWei Li
    [J]. Science China Technological Sciences, 2023, 66 : 1263 - 1270
  • [10] Multi-Modal Inverse Constrained Reinforcement Learning from a Mixture of Demonstrations
    Qiao, Guanren
    Liu, Guiliang
    Poupart, Pascal
    Xu, Zhiqiang
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,