Bayesian quantile inference and order shrinkage for hysteretic quantile autoregressive models

被引:0
|
作者
Peng, Bo [1 ]
Yang, Kai [1 ]
Dong, Xiaogang [1 ]
Li, Chunjing [1 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, 2055 Yanan St, Changchun City 130000, Jilin Province, Peoples R China
关键词
Quantile autoregression; hysteretic autoregressive models; Bayesian quantile inference; spike-and-slab prior; order shrinkage; VARIABLE SELECTION; TIME-SERIES; REGRESSION; LIKELIHOOD;
D O I
10.1080/00949655.2024.2359607
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hysteretic quantile autoregressive model combines the hysteretic patterns and quantile autoregression, which can capture the dynamic relationship and nonlinear characteristics at different quantiles in time series data. In this paper, the Bayesian quantile inference and order shrinkage are studied for a class of hysteretic quantile autoregressive time series models. By using Markov Chain Monte Carlo (MCMC) techniques, the proposed Bayesian quantile method can handle the sparse hysteretic quantile autoregressive model well. It can accurately determine order of the model and estimate non-zero coefficients. Both simulation studies and a data example show that the proposed methods are feasible, reliable and appropriate for analysing the US Gross National Product data set.
引用
收藏
页码:2892 / 2915
页数:24
相关论文
共 50 条
  • [1] CONDITIONAL QUANTILE ESTIMATION FOR HYSTERETIC AUTOREGRESSIVE MODELS
    Li, Degao
    Zeng, Ruochen
    Zhang, Liwen
    Li, Wai Keung
    Li, Guodong
    [J]. STATISTICA SINICA, 2020, 30 (02) : 809 - 827
  • [2] Bayesian inference for quantile autoregressive model with explanatory variables
    Yang, Kai
    Peng, Bo
    Dong, Xiaogang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (09) : 2946 - 2965
  • [3] Bayesian empirical likelihood inference and order shrinkage for autoregressive models
    Yang, Kai
    Ding, Xue
    Yuan, Xiaohui
    [J]. STATISTICAL PAPERS, 2022, 63 (01) : 97 - 121
  • [4] Bayesian empirical likelihood inference and order shrinkage for autoregressive models
    Kai Yang
    Xue Ding
    Xiaohui Yuan
    [J]. Statistical Papers, 2022, 63 : 97 - 121
  • [5] Bayesian quantile inference
    Tsionas, EG
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (09) : 659 - 674
  • [6] Weighted composite quantile inference for nearly nonstationary autoregressive models
    Liu, Bingqi
    Pang, Tianxiao
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2024,
  • [7] The tenets of quantile-based inference in Bayesian models
    Perepolkin, Dmytro
    Goodrich, Benjamin
    Sahlin, Ullrika
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [8] Bayesian inference for additive mixed quantile regression models
    Yue, Yu Ryan
    Rue, Havard
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 84 - 96
  • [9] Objective bayesian inference for quantile ratios in normal models
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (15) : 5085 - 5111
  • [10] A Bayesian Variable Selection Method for Spatial Autoregressive Quantile Models
    Zhao, Yuanying
    Xu, Dengke
    [J]. MATHEMATICS, 2023, 11 (04)