Relationship between the Significant Solutions of Static Traffic Assignment Problems for Mixed Traffic Flow of Connected and Automated Vehicles and Human-Driven Vehicles

被引:0
|
作者
Yun, Jaewoong [1 ]
机构
[1] Yonsei Univ, Dept Urban Planning & Engn, Seoul 03722, South Korea
关键词
ROUTE FLOWS; ALGORITHM;
D O I
10.1155/2024/9400721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Connected and automated vehicles can reduce the traffic congestion level of the entire network through platoon-driving technologies compared to human-driven vehicles. One promising approach to enhancing platoon-driving technology's efficiency is deploying dedicated lanes or roads for connected and automated vehicles. Since asymmetric interactions between different vehicle types increase road congestion, it is necessary to distinguish routes for efficient traffic management. However, the traditional traffic assignment problem, which uses only user equilibrium as a constraint with no difference in travel time between users, could not be proposed as a globally optimal solution because it generates an infinite number of locally optimal solutions. Recent studies have attempted to overcome the limitations by considering the sum of system-wide travel times as an additional constraint. Their research sought to help propose optimal deployment strategies through the lowest total travel time solution (best-case) or design robust transport planning strategies through the highest total travel time solution (worst-case). However, past studies have not focused on the possibility of the best/worst case appearing in reality. This study focused on the relationship between the two solutions pointed out in past studies and traffic patterns likely to appear in reality. This study interprets the Karush-Kun-Tucker condition of the static traffic assignment problem, considering the asymmetric interaction, and proposes a solution algorithm using discrete dynamics. The proposed algorithm extends the most widely used method in transportation planning research, which can overcome the limitations of asymmetric interaction problems through simple variations. The proposed algorithm can reliably derive two solutions, and entropy theory shows that both solutions are unlikely to appear in reality without additional policies such as dedicated lanes or roads.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles
    Wang, Jian
    Peeta, Srinivas
    He, Xiaozheng
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2019, 126 : 139 - 168
  • [2] CTM-based traffic signal optimization of mixed traffic flow with connected automated vehicles and human-driven vehicles
    Yao, Zhihong
    Jin, Yuting
    Jiang, Haoran
    Hu, Lu
    Jiang, Yangsheng
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 603
  • [3] Flow-aware platoon formation of Connected Automated Vehicles in a mixed traffic with human-driven vehicles
    Woo, Soomin
    Skabardonis, Alexander
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 133
  • [4] Variable Cell Transmission Model for Mixed Traffic Flow with Connected Automated Vehicles and Human-Driven Vehicles
    Jin, Yuting
    Yao, Zhihong
    Han, Jiazhe
    Hu, Lu
    Jiang, Yangsheng
    [J]. Journal of Advanced Transportation, 2022, 2022
  • [5] Variable Cell Transmission Model for Mixed Traffic Flow with Connected Automated Vehicles and Human-Driven Vehicles
    Jin, Yuting
    Yao, Zhihong
    Han, Jiazhe
    Hu, Lu
    Jiang, Yangsheng
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [6] Trajectory reconstruction for freeway traffic mixed with human-driven vehicles and connected and automated vehicles
    Wang, Yunpeng
    Wei, Lei
    Chen, Peng
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 111 : 135 - 155
  • [7] Trajectory Optimization for Mixed Traffic Flow of Human-Driven Vehicles and Connected and Autonomous Vehicles
    Li, Hui
    Guo, Ya-Hui
    Zhang, Xu
    Ge, Yun-Fei
    Li, Shu-Xin
    [J]. CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1816 - 1826
  • [8] A multiclass simulation-based dynamic traffic assignment model for mixed traffic flow of connected and autonomous vehicles and human-driven vehicles
    Mehrabani, Behzad Bamdad
    Erdmann, Jakob
    Sgambi, Luca
    Seyedabrishami, Seyedehsan
    Snelder, Maaike
    [J]. TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2023,
  • [9] Optimal toll design problems under mixed traffic flow of human-driven vehicles and connected and autonomous vehicles
    Wang, Jian
    Lu, Lili
    Peeta, Srinivas
    He, Zhengbing
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125
  • [10] Motion Prediction of Human-Driven Vehicles in Mixed Traffic with Connected Autonomous Vehicles
    Zhang, Linjun
    Tseng, Eric
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 398 - 403