Kresling origami mechanics explained: Experiments and theory

被引:19
|
作者
Zang, Shixi [1 ]
Misseroni, Diego [2 ]
Zhao, Tuo [1 ]
Paulino, Glaucio H. [1 ,3 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
[2] Univ Trento, Dept Civil Environm & Mech Engn, Trento, Italy
[3] Princeton Univ, Princeton Mat Inst PMI, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Origami; Kresling pattern; Potential energy;
D O I
10.1016/j.jmps.2024.105630
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
From a kinematics perspective, a Kresling origami cell couples axial displacement (contraction/expansion) with twist, leading to non -rigid origami behavior. From an energy landscape perspective, the selection of the Kresling origami geometry, together with its fabrication process and material, lead to energy envelopes allowing single or multiple stable states. In this context, this paper explores the Kresling origami mechanics through mathematical modeling integrated with experimental testing. On the theoretical mechanics front, we present a comprehensive model incorporating the representative geometrical parameters of the Kresling origami cell into the corresponding energy function in order to capture its essential mechanical behavior. On the experimental mechanics front, we create two fixtures that demonstrate the ability to control axial displacement (contraction/expansion) and twist independently, without imposing any constraints on the chiral arrangement of individual cells within the Kresling origami array (composed of multiple cells). Finally, we show the coexistence of multiple mechanical and morphological configurations within the same Kresling array by programming its loading modes, i.e., compression or twist. The fundamental nature of this work makes it applicable to several fields of engineering, including soft robotics and mechanical computing.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Dynamics of Kresling origami deployment
    Kidambi, N.
    Wang, K. W.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [2] Topological state transfer in Kresling origami
    Yasuhiro Miyazawa
    Chun-Wei Chen
    Rajesh Chaunsali
    Timothy S. Gormley
    Ge Yin
    Georgios Theocharis
    Jinkyu Yang
    Communications Materials, 3
  • [3] The Kresling origami spring: a review and assessment
    Masana, Ravindra
    Dalaq, Ahmed S.
    Khazaaleh, Shadi
    Daqaq, Mohammed F.
    SMART MATERIALS AND STRUCTURES, 2024, 33 (04)
  • [4] On the starting point in designing Kresling origami
    Alipour S.M.
    Arghavani J.
    Aerospace Science and Technology, 2023, 138
  • [5] Elastic energy trapping in Kresling origami
    Alipour, Seyed Masoud
    Arghavani, Jamal
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (29) : 11755 - 11770
  • [6] Topological state transfer in Kresling origami
    Miyazawa, Yasuhiro
    Chen, Chun-Wei
    Chaunsali, Rajesh
    Gormley, Timothy S.
    Yin, Ge
    Theocharis, Georgios
    Yang, Jinkyu
    COMMUNICATIONS MATERIALS, 2022, 3 (01)
  • [7] Nonrigidly Foldability Analysis of Kresling Cylindrical Origami
    Cai Jianguo
    Liu Yangqing
    Ma Ruijun
    Feng Jian
    Zhou Ya
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2017, 9 (04):
  • [8] A Kresling origami metamaterial with reprogrammable shock stiffness
    Ruiwei Liu
    Yantong Huang
    Manjia Su
    Chenxiao Li
    Beibin Liang
    Chunlong Wang
    Theoretical & Applied Mechanics Letters, 2024, 14 (04) : 314 - 320
  • [9] Electrostatically Driven Kresling Origami Soft Pump
    Zhao, Jindong
    Yu, Tang
    Zhang, Yongfa
    Sun, Hualiang
    Xu, Ming
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7166 - 7173
  • [10] A Kresling origami metamaterial with reprogrammable shock stiffness
    Liu, Ruiwei
    Huang, Yantong
    Su, Manjia
    Li, Chenxiao
    Liang, Beibin
    Wang, Chunlong
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2024, 14 (04)