Semi-supervised topic representation through sentiment analysis and semantic networks

被引:1
|
作者
Ortu, Marco [1 ]
Romano, Maurizio [1 ]
Carta, Andrea [1 ]
机构
[1] Univ Cagliari, Dept Business & Econ Sci, Viale Fra Ignazio 17, Cagliari, Italy
关键词
Semi-supervised clustering; Topic modeling; Natural language processing; Threshold-based na & iuml; ve Bayes classifier; COMMUNITY DETECTION;
D O I
10.1016/j.bdr.2024.100474
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel approach to topic detection aimed at improving the semi-supervised clustering of customer reviews in the context of customers' services. The proposed methodology, named SeMi-supervised clustering for Assessment of Reviews using Topic and Sentiment (SMARTS) for Topic-Community Representation with Semantic Networks, combines semantic and sentiment analysis of words to derive topics related to positive and negative reviews of specific services. To achieve this, a semantic network of words is constructed based on word embedding semantic similarity to identify relationships between words used in the reviews. The resulting network is then used to derive the topics present in users' reviews, which are grouped by positive and negative sentiment based on words related to specific services. Clusters of words, obtained from the network's communities, are used to extract topics related to particular services and to improve the interpretation of users' assessments of those services. The proposed methodology is applied to tourism review data from Booking.com, and the results demonstrate the efficacy of the approach in enhancing the interpretability of the topics obtained by semi-supervised clustering. The methodology has the potential to provide valuable insights into the sentiment of customers toward tourism services, which could be utilized by service providers and decision-makers to enhance the quality of their services.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Semi-Supervised Topic Model Incorporating Sentiment and Dynamic Characteristic
    Zhang, Lanshan
    Ding, Xi
    Tian, Ye
    Gong, Xiangyang
    Wang, Wendong
    CHINA COMMUNICATIONS, 2016, 13 (12) : 162 - 175
  • [2] A Semi-Supervised Topic Model Incorporating Sentiment and Dynamic Characteristic
    Lanshan Zhang
    Xi Ding
    Ye Tian
    Xiangyang Gong
    Wendong Wang
    中国通信, 2016, 13 (12) : 162 - 175
  • [3] SMARTS: SeMi-Supervised Clustering for Assessment of Reviews Using Topic and Sentiment
    Ortu, Marco
    Romano, Maurizio
    Carta, Andrea
    RECENT TRENDS AND FUTURE CHALLENGES IN LEARNING FROM DATA, ECDA 2022, 2024, : 95 - 106
  • [4] A hybrid semi-supervised boosting to sentiment analysis
    Tanha, Jafar
    Mahmudyan, Solmaz
    Farahi, Ahmad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 1769 - 1784
  • [5] Sentiment analysis in Turkish: Supervised, semi-supervised, and unsupervised techniques
    Aydin, Cem Rifki
    Gungor, Tunga
    NATURAL LANGUAGE ENGINEERING, 2021, 27 (04) : 455 - 483
  • [6] Improving Twitter Sentiment Analysis with Topic-Based Mixture Modeling and Semi-Supervised Training
    Xiang, Bing
    Zhou, Liang
    PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, 2014, : 434 - 439
  • [7] LJST: A Semi-supervised Joint Sentiment-Topic Model for Short Texts
    Sengupta A.
    Roy S.
    Ranjan G.
    SN Computer Science, 2021, 2 (4)
  • [8] Fuzzy deep belief networks for semi-supervised sentiment classification
    Zhou, Shusen
    Chen, Qingcai
    Wang, Xiaolong
    NEUROCOMPUTING, 2014, 131 : 312 - 322
  • [9] Semi-supervised dimensional sentiment analysis with variational autoencoder
    Wu, Chuhan
    Wu, Fangzhao
    Wu, Sixing
    Yuan, Zhigang
    Liu, Junxin
    Huang, Yongfeng
    KNOWLEDGE-BASED SYSTEMS, 2019, 165 : 30 - 39
  • [10] Attention Aware Semi-supervised Framework for Sentiment Analysis
    Liu, Jingshuang
    Rong, Wenge
    Tian, Chuan
    Gao, Min
    Xiong, Zhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 208 - 215