Combinatorial metabolic engineering of Bacillus subtilis for de novo production of polymyxin B

被引:1
|
作者
Sun, Hui-Zhong [1 ,2 ]
Li, Qing [1 ,2 ]
Shang, Wei [1 ,2 ]
Qiao, Bin [1 ,2 ]
Xu, Qiu-Man [3 ]
Cheng, Jing-Sheng [1 ,2 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Yaguan Rd 135, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Dept Pharmaceut Engn, Key Lab Syst Bioengn,Minist Educ, Yaguan Rd 135, Tianjin 300350, Peoples R China
[3] Tianjin Normal Univ, Coll Life Sci, Tianjin Key Lab Anim & Plant Resistance, Binshuixi Rd 393, Tianjin 300387, Peoples R China
关键词
Polymyxin; De novo synthesis; Combinatorial metabolic engineering; Bacillus subtilis; Fatty acids; PAENIBACILLUS-POLYMYXA; MAJOR COMPONENTS; GENE-CLUSTER; BIOSYNTHESIS; SYNTHETASE; EXPRESSION; COLISTIN; CLONING; REPLACEMENT; RESTRICTION;
D O I
10.1016/j.ymben.2024.04.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Polymyxin is a lipopeptide antibiotic that is effective against multidrug-resistant Gram-negative bacteria. However, its clinical development is limited due to low titer and the presence of homologs. To address this, the polymyxin gene cluster was integrated into Bacillus subtilis, and sfp from Paenibacillus polymyxa was expressed heterologously, enabling recombinant B. subtilis to synthesize polymyxin B. Regulating NRPS domain inhibited formation of polymyxin B2 and B3. The production of polymyxin B increased to 329.7 mg/L by replacing the native promoters of pmxA, pmxB, and pmxE with PfusA, C2up, and PfusA, respectively. Further enhancement in this production, up to 616.1 mg/L, was achieved by improving the synthesis ability of 6-methyloctanoic acid compared to the original strain expressing polymyxin heterologously. Additionally, incorporating an anikasinderived domain into the hybrid nonribosomal peptide synthase of polymyxin increased the B1 ratio in polymyxin B from 57.5% to 62.2%. Through optimization of peptone supply in the fermentation medium and fermentation in a 5.0-L bioreactor, the final polymyxin B titer reached 962.1 mg/L, with a yield of 19.24 mg/g maltodextrin and a productivity of 10.02 mg/(L & sdot;h). This study demonstrates a successful approach for enhancing polymyxin B production and increasing the B1 ratio through combinatorial metabolic engineering.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [1] Metabolic engineering of Bacillus subtilis for de novo synthesis of 6′-sialyllactose
    Chen, Qi
    Xu, Xianhao
    Sun, Zhengyan
    Wang, Yu
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Lv, Xueqin
    Liu, Long
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2024, : 223 - 236
  • [2] De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis
    Haojian Li
    Guoqiang Zhang
    Aihua Deng
    Ning Chen
    Tingyi Wen
    Biotechnology Letters, 2011, 33 : 1575 - 1580
  • [3] De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis
    Li, Haojian
    Zhang, Guoqiang
    Deng, Aihua
    Chen, Ning
    Wen, Tingyi
    BIOTECHNOLOGY LETTERS, 2011, 33 (08) : 1575 - 1580
  • [4] Combinatorial metabolic engineering of Escherichia coli for de novo production of 2′-fucosyllactose
    Lin, Lu
    Gong, Mengyue
    Liu, Yanfeng
    Li, Jianghua
    Lv, Xueqin
    Du, Guocheng
    Liu, Long
    BIORESOURCE TECHNOLOGY, 2022, 351
  • [5] Metabolic engineering of Bacillus subtilis for terpenoid production
    Guan, Zheng
    Xue, Dan
    Abdallah, Ingy I.
    Dijkshoorn, Linda
    Setroikromo, Rita
    Lv, Guiyuan
    Quax, Wim J.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (22) : 9395 - 9406
  • [6] Metabolic engineering of Bacillus subtilis for terpenoid production
    Zheng Guan
    Dan Xue
    Ingy I. Abdallah
    Linda Dijkshoorn
    Rita Setroikromo
    Guiyuan Lv
    Wim J. Quax
    Applied Microbiology and Biotechnology, 2015, 99 : 9395 - 9406
  • [7] Combinatorial metabolic engineering of Bacillus subtilis for menaquinone-7 biosynthesis
    Sun, Xian
    Bi, Xinyu
    Li, Guyue
    Cui, Shixiu
    Xu, Xianhao
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Lv, Xueqin
    Liu, Long
    BIOTECHNOLOGY AND BIOENGINEERING, 2024, : 3338 - 3350
  • [8] Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine
    Meng, Wu
    Wang, Ruiming
    Xiao, Dongguang
    BIOTECHNOLOGY LETTERS, 2015, 37 (12) : 2475 - 2480
  • [9] Improvement of uridine production in Bacillus subtilis by metabolic engineering
    Wang, Yanhong
    Ma, Ranjing
    Liu, Lu
    He, Lin
    Ban, Rui
    BIOTECHNOLOGY LETTERS, 2018, 40 (01) : 151 - 155
  • [10] Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review
    Liu, Yang
    Zhang, Quan
    Qi, Xiaoxiao
    Gao, Huipeng
    Wang, Meng
    Guan, Hao
    Yu, Bo
    MICROORGANISMS, 2023, 11 (01)