Sustainable strategies for recovering metallic copper from waste printed circuit boards: Clean leaching and micro-nano copper powder preparation

被引:2
|
作者
Li, Xi-guang [1 ,2 ]
Shi, Shun-xiang [2 ]
Yan, Shuai [3 ]
Li, Lin [1 ,2 ]
Qin, Xi-zhuang [1 ,2 ]
Zhu, Xiang-nan [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Energy & Min Engn, Qingdao 266590, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Chem & Biol Engn, Qingdao 266590, Shandong, Peoples R China
[3] Ningbo Univ Technol, Sch Mat & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
WPCBs; Copper; Clean leaching; Chemical reduction; Micro -nano copper; LITHIUM-ION BATTERIES; NANOPARTICLES; EFFICIENT;
D O I
10.1016/j.jece.2024.113220
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recovery and utilization of valuable metals from waste printed circuit boards (WPCBs) have the dual significance of alleviating resource shortages and protecting the ecological environment. This study focuses on the feasibility analysis of copper in WPCBs for preparing micro-nano copper powders by clean leaching and chemical reduction processes. Firstly, the effect of temperature and other parameters on copper leaching rate in glycine-hydrogen peroxide (Gly-H2O2), ammonia-ammonium chloride (NH3 center dot H2O-NH4Cl) leaching systems with sulfuric acidhydrogen peroxide (H2SO4-H2O2) system as control group were emphasized. Subsequently, the leaching characteristics of copper concentrate particles were analyzed by leaching kinetics to elucidate the leaching mechanism and apparent activation energy of copper. Finally, the micro-nano copper powders were prepared using ascorbic acid and sodium borohydride reduction system with different copper leach solutions as precursors. The micro-nano copper morphology and phase compositions were analyzed by SEM and XRD. The results show that both the Gly-H2O2 and NH3 center dot H2O-NH4Cl system can replace the H2SO4-H2O2 system to achieve efficient leaching of copper. Increasing temperature can significantly enhance the copper leaching rate. When the temperature was increased from 15 degrees C to 45 degrees C, the maximum copper leaching rate in the three systems increased from 58.13 %,71.26 %,78.26 % to 90.36 %,91.21 %,92.87 %, at - 0.074 mm for 40 min. The Avrami model accurately describes the leaching behavior of copper concentrate particles, and the copper leaching process is dominated by chemical reaction control. SEM and XRD results show that micro-nano copper particles of hundreds of nanometers are successfully prepared by both reduction systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Leaching copper from shredded particles of waste printed circuit boards
    Yang, Haiyu
    Liu, Jingyang
    Yang, Jiakuan
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 187 (1-3) : 393 - 400
  • [2] Generation of copper rich metallic phases from waste printed circuit boards
    Cayumil, R.
    Khanna, R.
    Ikram-Ul-Haq, M.
    Rajarao, R.
    Hill, A.
    Sahajwalla, V.
    WASTE MANAGEMENT, 2014, 34 (10) : 1783 - 1792
  • [3] Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi
    Liu, Qian
    Bai, Jian-feng
    Gu, Wei-hua
    Peng, Sheng-juan
    Wang, Lin-cai
    Wang, Jing-wei
    Li, Hui-xin
    HYDROMETALLURGY, 2020, 196
  • [4] Copper recovery from waste printed circuit boards
    N. Santa
    V. Salinas
    Minerals & Metallurgical Processing, 2017, 34 (3) : 158 - 158
  • [5] Recovery of copper from waste printed circuit boards
    Zhao, Y
    Wen, X
    Li, B
    Tao, D
    MINERALS & METALLURGICAL PROCESSING, 2004, 21 (02) : 99 - 102
  • [6] Recovery of copper from waste printed circuit boards
    Y. Zhao
    X. Wen
    B. Li
    D. Tao
    Mining, Metallurgy & Exploration, 2004, 21 : 99 - 102
  • [7] Pyrolysis-Based Technology for Recovering Copper from Transistors on Waste Printed Circuit Boards
    Hu, Mengkun
    Wang, Jianbo
    Xu, Zhenming
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (12): : 11354 - 11361
  • [8] PRODUCTION OF COPPER POWDER FROM PRINTED CIRCUIT BOARDS BY ELECTRODEPOSITION
    Masavetas, I.
    Moutsatsou, A.
    Nikolaou, E.
    Spanou, S.
    Zoikis-Karathanasis, A.
    Pavlatou, E. A.
    Spyrellis, N.
    GLOBAL NEST JOURNAL, 2009, 11 (02): : 241 - 247
  • [9] Micro-copper powders recovered from waste printed circuit boards by electrolysis
    Chu, Yingying
    Chen, Mengjun
    Chen, Shu
    Wang, Bin
    Fu, Kaibin
    Chen, Haiyan
    HYDROMETALLURGY, 2015, 156 : 152 - 157
  • [10] Clean recovery of copper from waste printed circuit boards using ceric ammonium nitrate
    Xia, Qiwen
    Zhang, Hui
    Liu, Kejia
    Li, Jian
    Zhang, Xuxia
    Xie, Yangyang
    Qi, Tao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 324