Data-driven exclusion criteria for instrumental variable studies

被引:0
|
作者
Liu, Tony [1 ,2 ]
Lawlor, Patrick [3 ]
Ungar, Lyle [1 ]
Kording, Konrad [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Roblox, San Mateo, CA 94403 USA
[3] Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA
关键词
instrumental variables; exclusion criteria; compliance estimation; fuzzy regression discontinuity design; clinical guidelines; medical claims data; diabetes diagnostic criteria; REGRESSION DISCONTINUITY DESIGNS; MENDELIAN RANDOMIZATION; EPIDEMIOLOGY; HEALTH; CARE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When using instrumental variables for causal inference, it is common practice to apply specific exclusion criteria to the data prior to estimation. This exclusion, critical for study design, is often done in an ad hoc manner, informed by a priori hypotheses and domain knowledge. In this study, we frame exclusion as a data-driven estimation problem, and apply flexible machine learning methods to estimate the probability of a unit complying with the instrument. We demonstrate how excluding likely noncompliers can increase power while maintaining valid treatment effect estimates. We show the utility of our approach with a fuzzy regression discontinuity analysis of the effect of initial diabetes diagnosis on follow-up blood sugar levels. Data-driven exclusion criterion can help improve both power and external validity for various quasi-experimental settings.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Data-Driven Predictive Control Using Closed-Loop Data: An Instrumental Variable Approach
    Wang, Yibo
    Qiu, Yiwen
    Sader, Malika
    Huang, Dexian
    Shang, Chao
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3639 - 3644
  • [2] Iterative motion feedforward tuning: A data-driven approach based on instrumental variable identification
    Boeren, Frank
    Oomen, Tom
    Steinbuch, Maarten
    [J]. CONTROL ENGINEERING PRACTICE, 2015, 37 : 11 - 19
  • [3] Data-driven criteria for quantum correlations
    Krawczyk, Mateusz
    Pawlowski, Jaroslaw
    Maska, Maciej M.
    Roszak, Katarzyna
    [J]. PHYSICAL REVIEW A, 2024, 109 (02)
  • [4] Data-driven parameter tuning for rational feedforward controller: Achieving optimal estimation via instrumental variable
    Huang, Weicai
    Yang, Kaiming
    Zhu, Yu
    Lu, Sen
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2021, 15 (07): : 937 - 948
  • [5] Data-driven based variable geometry design
    Yinpo Xu
    Cheng Yin
    Xuefeng Zou
    Yingjie Pan
    Yudong Ni
    Hongbin Yi
    [J]. Earthquake Research Advances, 2021, 1 (S1) : 70 - 75
  • [6] Data-driven criteria for defining SpA using MRI
    Megan Cully
    [J]. Nature Reviews Rheumatology, 2013, 9 (2) : 65 - 65
  • [7] Data-Driven Variable Decomposition for Treatment Effect Estimation
    Kuang, Kun
    Cui, Peng
    Zou, Hao
    Li, Bo
    Tao, Jianrong
    Wu, Fei
    Yang, Shiqiang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2120 - 2134
  • [8] Treatment Effect Estimation with Data-Driven Variable Decomposition
    Kuang, Kun
    Cui, Peng
    Li, Bo
    Jiang, Meng
    Yang, Shiqiang
    Wang, Fei
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 140 - 146
  • [9] Data-Driven Preference Learning Methods for Value-Driven Multiple Criteria Sorting with Interacting Criteria
    Liu, Jiapeng
    Kadzinski, Milosz
    Liao, Xiuwu
    Mao, Xiaoxin
    [J]. INFORMS JOURNAL ON COMPUTING, 2021, 33 (02) : 586 - 606
  • [10] Selection Criteria for the Analysis of Data-Driven Clusters in Cerebral fMRI
    Gomez-Laberge, Camille
    Adler, Andy
    Cameron, Ian
    Nguyen, Thanh Binh
    Hogan, Matthew J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (10) : 2372 - 2380