Autoencoder-Based Unsupervised Surface Defect Detection Using Two-Stage Training

被引:1
|
作者
Shiferaw, Tesfaye Getachew [1 ]
Yao, Li [1 ,2 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
[2] Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing 211189, Peoples R China
关键词
autoencoder; surface defect detection; structural similarity; perceptual similarity; artificial defect generation; VISUAL INSPECTION;
D O I
10.3390/jimaging10050111
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Accurately detecting defects while reconstructing a high-quality normal background in surface defect detection using unsupervised methods remains a significant challenge. This study proposes an unsupervised method that effectively addresses this challenge by achieving both accurate defect detection and a high-quality normal background reconstruction without noise. We propose an adaptive weighted structural similarity (AW-SSIM) loss for focused feature learning. AW-SSIM improves structural similarity (SSIM) loss by assigning different weights to its sub-functions of luminance, contrast, and structure based on their relative importance for a specific training sample. Moreover, it dynamically adjusts the Gaussian window's standard deviation (sigma) during loss calculation to balance noise reduction and detail preservation. An artificial defect generation algorithm (ADGA) is proposed to generate an artificial defect closely resembling real ones. We use a two-stage training strategy. In the first stage, the model trains only on normal samples using AW-SSIM loss, allowing it to learn robust representations of normal features. In the second stage of training, the weights obtained from the first stage are used to train the model on both normal and artificially defective training samples. Additionally, the second stage employs a combined learned Perceptual Image Patch Similarity (LPIPS) and AW-SSIM loss. The combined loss helps the model in achieving high-quality normal background reconstruction while maintaining accurate defect detection. Extensive experimental results demonstrate that our proposed method achieves a state-of-the-art defect detection accuracy. The proposed method achieved an average area under the receiver operating characteristic curve (AuROC) of 97.69% on six samples from the MVTec anomaly detection dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Autoencoder-based anomaly detection for surface defect inspection
    Tsai, Du-Ming
    Jen, Po-Hao
    ADVANCED ENGINEERING INFORMATICS, 2021, 48
  • [2] Graph autoencoder-based unsupervised outlier detection
    Du, Xusheng
    Yu, Jiong
    Chu, Zheng
    Jin, Lina
    Chen, Jiaying
    INFORMATION SCIENCES, 2022, 608 : 532 - 550
  • [3] Unsupervised varistor surface defect detection based on variational autoencoder
    Tang S.
    Chen M.
    Wang H.
    Zhang X.
    Zhang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (05): : 1337 - 1351
  • [4] Autoencoder-based defect detection in PVC profile manufacturing
    Aslan, Ahmet Zahit
    Onal, Sinan
    INTERNATIONAL JOURNAL OF MANUFACTURING RESEARCH, 2024, 19 (02) : 119 - 144
  • [5] A Lightweight Deep Autoencoder-based Approach for Unsupervised Anomaly Detection
    Dlamini, Gcinizwe
    Galieva, Rufina
    Fahim, Muhammad
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,
  • [6] Autoencoder-based unsupervised clustering and hashing
    Zhang, Bolin
    Qian, Jiangbo
    APPLIED INTELLIGENCE, 2021, 51 (01) : 493 - 505
  • [7] Autoencoder-based unsupervised clustering and hashing
    Bolin Zhang
    Jiangbo Qian
    Applied Intelligence, 2021, 51 : 493 - 505
  • [8] A Sparse Autoencoder-Based Unsupervised Scheme for Pump Fault Detection and Isolation
    Liang, Xiaoxia
    Duan, Fang
    Bennett, Ian
    Mba, David
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [9] A TWO-STAGE AUTOENCODER FOR VISUAL ANOMALY DETECTION
    Zhu, Yezhou
    Wang, Jianzhu
    Zhang, Jing
    Li, Qingyong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1869 - 1873
  • [10] TWO-STAGE NOISE AWARE TRAINING USING ASYMMETRIC DEEP DENOISING AUTOENCODER
    Lee, Kang Hyun
    Kang, Shin Jae
    Kang, Woo Hyun
    Kim, Nam Soo
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 5765 - 5769