Illusory generalizability of clinical prediction models

被引:30
|
作者
Chekroud, Adam M. [1 ,2 ]
Hawrilenko, Matt [1 ]
Loho, Hieronimus [2 ]
Bondar, Julia [1 ]
Gueorguieva, Ralitza [3 ]
Hasan, Alkomiet [4 ]
Kambeitz, Joseph [5 ,6 ]
Corlett, Philip R. [2 ]
Koutsouleris, Nikolaos [7 ]
Krumholz, Harlan M. [8 ]
Krystal, John H. [2 ]
Paulus, Martin [9 ]
机构
[1] Spring Hlth, New York, NY 10010 USA
[2] Yale Univ, Dept Psychiat, Sch Med, New Haven, CT 06520 USA
[3] Yale Univ, Dept Biostat, New Haven, CT 06520 USA
[4] Univ Augsburg, Dept Psychiat Psychotherapy & Psychosomat, D-86159 Augsburg, Germany
[5] Univ Cologne, Fac Med, Dept Psychiat & Psychotherapy, Cologne, Germany
[6] Univ Hosp Cologne, Cologne, Germany
[7] Ludwig Maximilians Univ Munchen, Dept Psychiat & Psychotherapy, Munich, Germany
[8] Yale New Haven Hosp, Ctr Outcomes Res & Evaluat, New Haven, CT 06520 USA
[9] Laureate Inst Brain Res, Tulsa, OK 74136 USA
关键词
REGULARIZATION; SCHIZOPHRENIA; SELECTION; SCALE;
D O I
10.1126/science.adg8538
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is widely hoped that statistical models can improve decision-making related to medical treatments. Because of the cost and scarcity of medical outcomes data, this hope is typically based on investigators observing a model's success in one or two datasets or clinical contexts. We scrutinized this optimism by examining how well a machine learning model performed across several independent clinical trials of antipsychotic medication for schizophrenia. Models predicted patient outcomes with high accuracy within the trial in which the model was developed but performed no better than chance when applied out-of-sample. Pooling data across trials to predict outcomes in the trial left out did not improve predictions. These results suggest that models predicting treatment outcomes in schizophrenia are highly context-dependent and may have limited generalizability.
引用
收藏
页码:164 / 167
页数:4
相关论文
共 50 条
  • [1] A Unified Framework on Generalizability of Clinical Prediction Models
    Wan, Bohua
    Caffo, Brian
    Vedula, S. Swaroop
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [2] Generalizability of Coronavirus Disease 2019 (COVID-19) Clinical Prediction Models
    Hooli, Shubhada
    King, Carina
    [J]. CLINICAL INFECTIOUS DISEASES, 2020, 71 (15) : 897 - 897
  • [3] Generalizability of Cardiovascular Disease Clinical Prediction Models: 158 Independent External Validations of 104 Unique Models
    Gulati, Gaurav
    Upshaw, Jenica
    Wessler, Benjamin S.
    Brazil, Riley J.
    Nelson, Jason
    van Klaveren, David
    Lundquist, Christine M.
    Park, Jinny G.
    McGinnes, Hannah
    Steyerberg, Ewout W.
    Van Calster, Ben
    Kent, David M.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2022, 15 (04): : 248 - 260
  • [4] On the cross-population generalizability of gene expression prediction models
    Keys, Kevin L.
    Mak, Angel C. Y.
    White, Marquitta J.
    Eckalbar, Walter L.
    Dahl, Andrew W.
    Mefford, Joel
    Mikhaylova, Anna, V
    Contreras, Maria G.
    Elhawary, Jennifer R.
    Eng, Celeste
    Hu, Donglei
    Huntsman, Scott
    Oh, Sam S.
    Salazar, Sandra
    Lenoir, Michael A.
    Ye, Jimmie C.
    Thornton, Timothy A.
    Zaitlen, Noah
    Burchard, Esteban G.
    Gignoux, Christopher R.
    [J]. PLOS GENETICS, 2020, 16 (08):
  • [5] Illusory predictors: Generalizability of findings in cocaine treatment retention research
    Stotts, Angela L.
    Mooney, Marc E.
    Sayre, Shelly L.
    Novy, Meredith
    Schmitz, Joy M.
    Grabowski, John
    [J]. ADDICTIVE BEHAVIORS, 2007, 32 (12) : 2819 - 2836
  • [6] Validation and generalizability of machine learning prediction models on attrition in longitudinal studies
    Jankowsky, Kristin
    Schroeders, Ulrich
    [J]. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT, 2022, 46 (02) : 169 - 176
  • [7] Semi-supervised learning to improve generalizability of risk prediction models
    Chi, Shengqiang
    Li, Xinhang
    Tian, Yu
    Li, Jun
    Kong, Xiangxing
    Ding, Kefeng
    Weng, Chunhua
    Li, Jingsong
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 92
  • [8] Bankruptcy prediction models' generalizability: Evidence from emerging market economies
    Oz, Ibrahim Onur
    Simga-Mugan, Can
    [J]. ADVANCES IN ACCOUNTING, 2018, 41 : 114 - 125
  • [9] A Bayesian approach to quantifying uncertainties and improving generalizability in traffic prediction models
    Sengupta, Agnimitra
    Mondal, Sudeepta
    Das, Adway
    Guler, S. Ilgin
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 162
  • [10] Utility of prediction model score: a proposed tool to standardize the performance and generalizability of clinical predictive models based on systematic review
    Ehresman, Jeff
    Lubelski, Daniel
    Pennington, Zach
    Hung, Bethany
    Ahmed, A. Karim
    Azad, Tej D.
    Lehner, Kurt
    Feghali, James
    Buser, Zorica
    Harrop, James
    Wilson, Jefferson
    Kurpad, Shekar
    Ghogawala, Zoher
    Sciubba, Daniel M.
    [J]. JOURNAL OF NEUROSURGERY-SPINE, 2021, 34 (05) : 779 - 787