Ultrasound-based radiomics analysis for differentiating benign and malignant breast lesions: from static images to CEUS video analysis (vol 12, 951973, 2022)

被引:0
|
作者
Zhu, Jun-Yan [1 ]
He, Han-Lu [1 ]
Lin, Zi-Mei [2 ]
Zhao, Jian-Qiang [3 ]
Jiang, Xiao-Chun [1 ]
Liang, Zhe-Hao [1 ]
Huang, Xiao-Ping [1 ]
Bao, Hai-Wei [1 ]
Huang, Pin-Tong [2 ]
Chen, Fen [1 ]
机构
[1] Zhejiang Chinese Med Univ, Dept Nephrol, Affiliated Hosp 1, Hangzhou, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Ultrasound Med, Hangzhou, Peoples R China
[3] XENIRO, Technol Dept, Shanghai, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2024年 / 14卷
关键词
breast cancer; contrast enhanced ultrasonography (CEUS); machine learning; convolutional neural network (CNN); radiomics;
D O I
10.3389/fonc.2024.1436117
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:1
相关论文
共 27 条
  • [1] Ultrasound-based radiomics analysis for differentiating benign and malignant breast lesions: From static images to CEUS video analysis
    Zhu, Jun-Yan
    He, Han-Lu
    Lin, Zi-Mei
    Zhao, Jian-Qiang
    Jiang, Xiao-Chun
    Liang, Zhe-Hao
    Huang, Xiao-Ping
    Bao, Hai-Wei
    Huang, Pin-Tong
    Chen, Fen
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [2] Breast Ultrasound-Based Deep Learning Radiomics Model for Differentiating Malignancy in Low Malignant Risk Lesions
    Department of Oncology, Shengjing Hospital, China Medical University, Shenyang
    110004, China
    不详
    110004, China
    不详
    不详
    1600,
  • [3] Differentiating infected focal liver lesions from malignant mimickers: value of ultrasound-based radiomics
    Peng, J. B.
    Peng, Y. T.
    Lin, P.
    Wan, D.
    Qin, H.
    Li, X.
    Wang, X. R.
    He, Y.
    Yang, H.
    CLINICAL RADIOLOGY, 2022, 77 (02) : 104 - 113
  • [4] Ultrasound-based radiomics analysis for discriminating between benign and malignant ovarian masses with solid ultrasound morphology
    Moro, F.
    Bernardini, F.
    Tran, H.
    Vagni, M.
    Boldrini, L.
    Ciccarone, F.
    Nero, C.
    Mascilini, F.
    Pozzati, F.
    Quagliozzi, L.
    Giannarelli, D.
    Scambia, G.
    Valentin, L.
    Testa, A. C.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 : 84 - 84
  • [5] Diagnostic value of a power Doppler ultrasound-based malignancy index for differentiating malignant and benign solid breast lesions
    Enshaei, Ali
    Mohammadi, Afshin
    Toomatari, Seyed Babak Moosavi
    Yekta, Zahra
    Toomatari, Seyed Ehsan Moosavi
    Ghasemi-Rad, Mohammad
    Shamspour, Saber Zafar
    Sarabi, Zahra Karimi
    Sepehrvand, Nariman
    INDIAN JOURNAL OF CANCER, 2020, 57 (01) : 44 - 48
  • [6] Spatiotemporal analysis of contrast-enhanced ultrasound for differentiating between malignant and benign breast lesions
    Chen, Chuan
    Turco, Simona
    Kapetas, Panagiotis
    Mann, Ritse
    Wijkstra, Hessel
    de Korte, Chris
    Mischi, Massimo
    EUROPEAN RADIOLOGY, 2024, 34 (07) : 4764 - 4773
  • [7] Ultrasound-based deep learning using the VGGNet model for the differentiation of benign and malignant thyroid nodules: A meta-analysis (vol 12, 944859, 2022)
    Zhu, Pei-Shan
    Zhang, Yu-Rui
    Ren, Jia-Yu
    Li, Qiao-Li
    Chen, Ming
    Sang, Tian
    Li, Wen-Xiao
    Li, Jun
    Cui, Xin-Wu
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [8] Filtering Based Feature Extraction to Classify the Benign and Malignant Lesions from Breast Ultrasound Images
    Prabhakar, Telagarapu
    Poonguzhali, S.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (06) : 1469 - 1474
  • [9] US-based Radiomics Analysis of Different Machine Learning Models for Differentiating Benign and Malignant BI-RADS 4A Breast Lesions
    Ye, Jieyi
    Chen, Yinting
    Pan, Jiawei
    Qiu, Yide
    Luo, Zhuoru
    Xiong, Yue
    He, Yanping
    Chen, Yingyu
    Xie, Fuqing
    Huang, Weijun
    ACADEMIC RADIOLOGY, 2025, 32 (01) : 67 - 78
  • [10] Clinical Breast MRI-based Radiomics for Distinguishing Benign and Malignant Lesions: An Analysis of Sequences and Enhanced Phases
    Wang, Guangsong
    Guo, Qiu
    Shi, Dafa
    Zhai, Huige
    Luo, Wenbin
    Zhang, Haoran
    Ren, Zhendong
    Yan, Gen
    Ren, Ke
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (03) : 1178 - 1189